


























CSE 3500 Algorithms and Complexity – Fall 2016

Lecture 4: September 8, 2016

Revision

• In the last lecture we had an introduction to randomized algorithms. We considered

the following two problems and devised randomized algorithms: 1) Repeated element

identification; and 2) Finding an element ≥ the median. For the first problem our

randomized algorithm took Õ(log n) time and for the second problem the run time was

O(log n). In both cases we argued that any deterministic algorithm will, in the worst

case, need Ω(n) time.

• We defined a high probability to be a probability that is ≥ (1−n−α). However, all the

analyses can be done even if we have a different notion of a high probability.

• Let p be the high probability of interest. For the algorithm that we discussed for the

problem of finding an element ≥ the median, we picked k elements randomly, found

and output the maximum of these k elements. Probability that a randomly picked

element is < the median is ≤ 1
2
. Thus the probability of an incorrect answer from the

algorithm is ≤
(
1
2

)k
. We want this probability to be ≤ (1− p). This will happen when

k ≥ log
(

1
1−p

)
.

Data Structures

• A data structure can be thought of as a black box where data can be stored. The

black box supports a set of operations. Depending on the type of data and the set of

operations supported, we have different data structures.

• Data structures play vital roles in data analysis as well as algorithms design.

• A dictionary supports the following three operations:

1. Search(x): search for the element x in the storage, where x is an arbitrary element;

2. Insert(x): insert the element x, where x is an arbitrary element;

3. Delete(x): delete the element x, x being an arbitrary element.

• Example applications for a dictionary: a library system, an employee database, etc.

• A min priority queue supports the following operations:



1. Find Min(): identify the smallest element in the storage;

2. Insert(x): insert the element x, where x is an arbitrary element;

3. Delete Min(): delete the smallest element.

• A max priority queue can be defined in a similar manner.

• An example application for a priority queue: sorting.

• A dictionary and a priority queue can be imlememnted using arrays and linked lists.

In this case each operation takes O(n) time. In each implementation, at least one of

the three operations under concern will take Ω(n) time. We could achieve a better

performance using trees.

Trees

• A tree is either empty or it has a node called the root and the root has k children

where each child is a tree. Here k ≥ 2.

• When k = 2, we have a binary tree.

• The level of the root is 1.

• If the level of a node in a tree is i, then its children have a level of i + 1.

• Any node in a tree that has no children is called a leaf or a terminal node.

• We can define descendents, ancestor, siblings, etc. for any node in a tree.

• The height of a tree is defined to be the maximum level of any node in the tree.

• Fact: If T is a binary tree with n nodes whose height is h, then, n ≥ h ≥ log(n + 1).

Proof: In a binary tree the maximum number of nodes we can have in level i is 2i−1.

This implies that the maximum number of nodes we can have in a binary tree of height

h is 1 + 2 + · · ·+ 2h−1 = 2h − 1. In other words, n ≤ 2h − 1. I.e., h ≥ log(n + 1). The

fact that h ≤ n is easy to see. This happens when we have a skewed tree where each

node (other than the leaf) has a single child. 2

• A binary tree is said to be full if every non leaf has exactly two children and all the

leaves are at the same level. A binary tree is defined to be complete if it is full except

that there could be some nodes missing in the last level and the missing nodes in the

last level (if any) are right justified. The height of a complete binary tree with n nodes

is Θ(log n).

• A generic data set can be thought of as consisting of records. Each record has a key

that can be used to shape the structure of a tree. In our discussion on data structures

we only consider the keys. Keys are stored in the nodes of a tree.



Heap

• An efficient implementation of a priority queue can be achieved using a heap.

• A min heap with n nodes is: 1) a complete binary tree; 2) the root has the smallest

key; 3) If a node in a heap has the key k, then its children have keys that are greater

than k.

• A heap of size n can be realized as an array A[1 : n]. A[1] stores the smallest key. For

any node i in the heap, we store its left child (if any) in A[2i] and its right child (if

any) in A[2i + 1]. If i is any node in a heap, then its ancestor is bi/2c.

• Note that the height of the above heap is Θ(log n).

• To process Find Min(): We output A[1]. This takes O(1) time.

• Consider an existing heap A[1 : n]. To process Insert(x):

A[n + 1] = x; i = (n + 1);

repeat

if i = 1 then quit;

i1 = bi/2c;
if A[i1] < x then quit;

else

A[i] = A[i1]; A[i1] = x; i = i1;

forever

• In the above algorithm for insert, we spend O(1) time per level of the tree. Thus the

run time for insert is O(log n).




