
























CSE 3500 Algorithms and Complexity – Fall 2016

Lecture 3: September 6, 2016

Identification of the Repeated Element: A Las Vegas

algorithm

• This problem is defined as follows. Input: X = k1, k2, . . . , kn. It is known that X has
n
2

copies of one element and the other elements are distinct (i.e., they occur exactly

once each). Output: the repeated element.

• In the last lecture we discussed several deterministic algorithms for solving this prob-

lem. The best of these algorithms takes O(n) time. We also argued that any deter-

ministic algorithm for solving this problem needs n
2

+ 2 time.

• We discussed the following Las Vegas algorithm for slving the repeated element iden-

tification problem:

repeat

Flip an n-sided coin to get i;

Flip an n-sided coin to get j;

if i = j and ki = kj then output ki and quit;

forever

• Definition: The run time of a Las Vegas algorithm is Õ(f(n)) if the run time is no

more than cαf(n) for all n ≥ n0, with a probability of ≥ (1 − n−α), where c and n0

are some constants.

• Claim: The run time of the above algorithm is Õ(log n).

Proof: Call the sequence of three statements within the repeat loop as a basic step.

Probability that we get success in one run of the basic step is
(n

2 )(n
2
−1)

n2 . This probability

is at least 1
5

for all n ≥ 10. Thus, the probability of failure in one basic step is ≤ 4
5
. This

means that the probability that the first k basic steps are all unsuccessful is ≤
(
4
5

)k
.

We want this probability to be very small, specifically no more than n−α. Equating

the two, we get the following value for k:

k =
α log n

log(5/4)
.



We have shown that the probability that the above algorithm takes more than α logn
log(5/4)

basic steps is ≤ n−α. Note that each basic step takes a constant time. Therefore, the

run time of the algorithm is ≤ cα log n with a probability of ≥ (1 − n−α), for some

constant c. Thus it follows that the run time of the algorithm is Õ(log n). 2

Finding an Element as Large as the Median

• Consider the following problem. Input: X = k1, k2, . . . , kn; Output: An element of X

that is at least as large as the median of X.

• For this problem also, several deterministic algorithms can be developed: 1) Sort X

and pick an element at the middle or to its right. This will take Θ(n log n) time; 2)

Find and output the maximum of X. This takes Θ(n) time; 3) Find and output the

maximum of k1, k2, . . . , kn/2. This also takes Θ(n) time.

• One could argue that any deterministic algorithm will need Ω(n) time to solve this

problem as follows: If an adversary chooses the input and if this adversary has perfect

knowledge about the algorithm, (s)he can force the algorithm to look at ≥ n
2

elements

of X. If the algorithm is ready to give an answer looking at less than n/2 elements, the

adversary can choose the other elements of X in such a manner to make the output of

the algorithm incorrect.

• We can devise a Monte Carlo algorithm that takes only O(log n) time and whose out-

put is correct with a high probability as follows.

Pick a random sample S of α log n elements from X;

Find and output the largest element of S;

The above algorithm will give an incorrect answer only if all the elements in S are

less than the median. Probability that a randomly picked element of X is less than

the median is ≤ 1
2
. Therefore, probability that all the elements in S are less than the

median of X is ≤
(
1
2

)α logn
= n−α. In other words, the output of this algorithm is

correct with a high probability. Clearly, the run time of the algorithm is O(log n).

Some Preliminaries

• Exponentials: If x, a, b are real numbers (with x 6= 0) then the following are true:

x0 = 1; (xa)b = (xb)a = xab; xaxb = xa+b;

• Logarithms: If a, b, c are real numbers > 0 and n is positive integer then the following

statements are true: a = blogb a; logc(ab) = logc a + logc b; logb a = logc a
logc b

; loga(1/b) =

− loga b; logb a
n = n logb a; alogb n = nlogb a;



• Stirling’s Approximation: Let n be a positive integer. Then, n! =
√

2πn
(
n
e

)n (
1 + Θ

(
1
n

))
;

• For any non-negative real number x, bxc is defined to be the largest integer less than

or equal to x. For instance, b5c = 5 and b3.2c = 3. Also, dxe is defined to be the

smallest integer greater than or equal to x. For example, d7.3e = 8 and d12e = 12.

• Geometric Series. If a and r(6= 1) are real numbers and n is any positive integer,

then the following statement are true:

a+ ar + ar2 + · · ·+ arn = a

(
rn+1 − 1

r − 1

)
.

As a corollary, it follows that:

1 + 2 + 22 + · · ·+ 2n = 2n+1 − 1.

• When |r| < 1,

a+ ar + ar2 + · · · = a

1− r
.

• Summations:
∑n
i=1 i = n(n+1)

2
;
∑n
i=1 i

2 = n(n+1)(2n+1)
6

;
∑n
i=1 i

3 =
[
n(n+1)

2

]2
.

• Approximating sums with integrals: We can approximate sums of the form∑b
i=a f(i), where f(i) is an integral function of i, with integrals. Consider the case when

the function f(i) is monotonically increasing with i. Note that f(i) ≤
∫ a+1
a f(i) di,

f(a + 1) ≤
∫ a+2
a+1 f(i) di, and so on. Adding up these piecewise approximations

we realize that
∑b
i=a f(i) ≤

∫ b+1
a f(i) di. Also, we see that f(a) ≥

∫ a
a−1 f(i) di,

f(a + 1) ≥
∫ a+1
a f(i) di, etc. Adding together, we note that

∑b
i=a f(i) ≥

∫ b
a−1 f(i) di.

Put together we get:

∫ b+1

a
f(i) di ≥

b∑
i=a

f(i) ≥
∫ b

a−1
f(i) di.

• As an example consider
∑n
i=1 i

2. Using the above fact we observe:

∫ n+1

1
i2 di ≥

n∑
i=1

i2 ≥
∫ n

0
i2 di.

In other words, (n+1)3−1
3

≥ ∑n
i=1 i

2 ≥ n3

3
. I.e.,

∑n
i=1 i

2 = Θ(n3).

Data Structures

• A data structure can be thought of as a black box where data can be stored. The

black box supports a set of operations. Depending on the type of data and the set of

operations supported, we have different data structures.



• Data structures play vital roles in data analysis as well as algorithms design.

• A dictionary supports the following three operations:

1. Search(x): search for the element x in the storage, where x is an arbitrary element;

2. Insert(x): insert the element x, where x is an arbitrary element;

3. Delete(x): delete the element x, x being an arbitrary element.

• Example applications for a dictionary: a library system, an employee database, etc.

• A min priority queue supports the following operations:

1. Find Min(): identify the smallest element in the storage;

2. Insert(x): insert the element x, where x is an arbitrary element;

3. Delete Min(): delete the smallest element.

• A max priority queue can be defined in a similar manner.

• An example application for a priority queue: sorting. We can sort n given elements

using a priority queue as follows. Let X = k1, k2, . . . , kn be the input.

Start with an empty priority queue Q;

for i = 1 to n do

Insert ki into Q;

for i = 1 to n do

Output Delete Min();

• The above algorithm is called heap sort and it is one of the asymptotically optimal

algorithms known for sorting.

• A dictionary and a priority queue can be imlememnted using arrays and linked lists.

In this case each operation takes O(n) time. In each implementation, at least one of

the three operations under concern will take Ω(n) time. We could achieve a better

performance using trees.


