CSE 3500 Algorithms and Complexity - Fall 2016 Lecture 26: December 1, 2016

Clique is $\mathcal{N} \mathcal{P}$-complete

- We have shown that Clique is a member of $\mathcal{N} \mathcal{P}$.
- We will show that $\mathrm{SAT} \propto$ Clique.
- Let $F=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{k}$ be any Boolean formula in CNF. Here $C_{1}, C_{2}, \ldots, C_{k}$ are clauses, where each clause is a disjunction of literals. (A literal is either a variable or its negation). The input for the Clique problem will be a graph and an integer.
- We generate the following input for Clique: $(G(V, E) ; k)$, where there is a node in G for every literal in every clause of F. If x_{q} is a literal in C_{i}, then the node corresponding to this literal is denoted as $\left(x_{q}, i\right)$.
- Two nodes $\left(x_{q}, i\right)$ and $\left(x_{r}, j\right)$ will be connected by an edge if and only if $i \neq j$ and $x_{q} \neq \bar{x}_{r}$.
- There are $O(|F|)$ nodes in G. Thus G can be constructed in $O\left(|F|^{2}\right)$ time, which is clearly a polynomial in the input size.
- Now we have to show that the reduction is correct.
- Assume that F is satisfiable. In this case we will show that G has a clique of size k. If F is satisfiable, then, in the satisfying assignment, there will be at least one literal in each clause whose value is T. Let σ_{i} be a literal in C_{i} whose value is T in the satisfying assignment, for $1 \leq i \leq k$. Then, consider the nodes $\left(\sigma_{1}, 1\right),\left(\sigma_{2}, 2\right), \ldots,\left(\sigma_{k}, k\right)$. Every pair of these nodes is connected by an edge in G since each node corresponds to a distinct clause and no two of the literals $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}$ negate each other. In other words, G has a clique of size k.
- Now assume that G has a clique of size k. Let the nodes that form a clique be $\left(\sigma_{1}, 1\right),\left(\sigma_{2}, 2\right), \ldots,\left(\sigma_{k}, k\right)$. Then, the following assignment will satisfy F : $\sigma_{i}=T$, for $1 \leq i \leq k$. This is because σ_{i} is in C_{i}, for $1 \leq i \leq k$. Also, no two of the literals $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}$ can negate each other and hence all of these literals can be set to T and there will not be any conflicts.
- In summary, we have shown that $S A T \propto$ Clique and hence Clique is also $\mathcal{N} \mathcal{P}$-complete.

Optimization and Decision Versions of Problems

- If there exists an efficient algorithm to solve the decision version of a problem, then we can also devise an efficient algorithm for solving the optimization version.
- As an example, consider the Clique problem. Assume that there exists a deterministic polynomial time algorithm CLQ to solve the decision version of the problem. In particular, given a graph $G(V, E)$ and an integer $k(1 \leq k \leq|V|)$, CLQ decides in $p(n)$ time if G has a clique of size k or not. Here $p(n)$ is a polynomial of constant degree. We can use CLQ to solve the optimization problem also in a deterministic polynomial time. Specifically, this algorithm will identify the largest k such that G has a clique of size k, given any graph $G(V, E)$ as the input. Here is such an algorithm:

$$
\begin{aligned}
& \text { for } k=|V| \text { downto } 1 \text { do } \\
& \quad \text { if } \operatorname{CLQ}(G(V, E) ; k) \text { then output } k \text { and quit; }
\end{aligned}
$$

The run time of the above algorithm is $O(n p(n))$ which is a constant degree polynomial.

- As another example, consider the SUBSET SUM problem. This problem takes as input a set $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of real numbers and another real number A. The problem is to check if there exists a subset S^{\prime} of S such that the sum of all the elements in S^{\prime} is A. An optimization version of the problem will also have a set S and a number A as the input. If there exists a subset S^{\prime} of S whose elements sum to A, then we are required to find one such subset.
- Assume that SSET is a deterministic algorithm for solving the decision version of the SUBSET SUM problem whose run time is a constant degree polynomial in n. Consider the following algorithm that finds a subset S^{\prime} of S whose elements sum to A (if there is one such subset):

$$
\text { for } i=1 \text { to } n \text { do }
$$

if the elements in S sum to A then output S and quit;
if $\operatorname{SSET}\left(S-\left\{a_{i}\right\}\right)$ then $S=S-\left\{a_{i}\right\}$;

Let $p(n)$ be the run time of SSET. Then SSET is called at most n times. These calls will cost $O(n p(n))$ time. Also, the elements in S are summed at most n times. The total time needed for these sums will be $O\left(n^{2}\right)$. Thus the total run time of this algorithm is $O\left(n p(n)+n^{2}\right)$ which is a constant degree polynomial.

Node Cover Decision Problem (NCDP) is $\mathcal{N} \mathcal{P}$-complete

- The NCDP takes as input an undirected graph $G(V, E)$ and an integer k (for some k, $1 \leq k \leq|V|)$. The problem is to check if G has a node cover of size k.
- A node cover for an undirected graph $G(V, E)$ is a subset V^{\prime} of V such that for every edge $(a, b) \in E$, either a is in V^{\prime} or b is in V^{\prime}. As an example, if $V=\{1,2,3,4\}$ and $E=\{(1,2),(1,4),(2,4),(2,3),(4,3),(3,5),(4,5)\}$, then, the following are two possible node covers: $\{1,3,4\}$ and $\{2,4,5\}$.
- Lemma: NCDP is $\mathcal{N} \mathcal{P}$-complete.

Proof: It is easy to show that NCDP in in $\mathcal{N} \mathcal{P}$. We'll show that Clique \propto NCDP. Let $(G(V, E) ; k)$ be any input for the Clique problem and let $n=|V|$. We generate the following instance for the NCDP: $\left(G^{\prime}\left(V, E^{\prime}\right) ; n-k\right)$, where $(a, b) \in E^{\prime}$ if $(a, b) \notin E$ and $(a, b) \notin E^{\prime}$ if $(a, b) \in E$ (for every pair of distinct nodes a and b in V). $G^{\prime}\left(V, E^{\prime}\right)$ is known as the complement of $G(V, E)$. Clearly, G^{\prime} can be constructed in $O\left(n^{2}\right)$ time.
Assume that G has a clique of size k. Let the set of nodes that form a clique be $A=$ $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$. No two of these nodes will be connected by an edge in G^{\prime}. This means in any node cover for G^{\prime} there is no need to include any of these nodes. In other words, $V-A$ is a node cover for G^{\prime} and $|V-A|=n-k$.
Now assume that G^{\prime} has a node cover of size $n-k$. Let the set of nodes that form a cover be $B=\left\{u_{1}, u_{2}, \ldots, u_{n-k}\right\}$. Let $C=V-B=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$. No two nodes in C will be connected by an edge in G^{\prime}. This is beacuse if $\left(w_{i}, w_{j}\right)$ is an edge in G^{\prime} (for some i and j), then at least one of these nodes should be in the node cover. This means that each pair of nodes in C will be connected by an edge in G. This means that G has a clique of size k. In summary, Clique $\propto \mathrm{NCDP}$ and hence NCDP is also $\mathcal{N} \mathcal{P}$-complete.

