
CSE 3500 Algorithms and Complexity – Fall 2016

Lecture 26: December 1, 2016

Clique is NP-complete

• We have shown that Clique is a member of NP .

• We will show that SAT ∝ Clique.

• Let F = C1∧C2∧· · ·∧Ck be any Boolean formula in CNF. Here C1, C2, . . . , Ck are clauses,

where each clause is a disjunction of literals. (A literal is either a variable or its negation).

The input for the Clique problem will be a graph and an integer.

• We generate the following input for Clique: (G(V,E); k), where there is a node in G for

every literal in every clause of F . If xq is a literal in Ci, then the node corresponding to

this literal is denoted as (xq, i).

• Two nodes (xq, i) and (xr, j) will be connected by an edge if and only if i 6= j and xq 6= x̄r.

• There are O(|F |) nodes in G. Thus G can be constructed in O(|F |2) time, which is clearly

a polynomial in the input size.

• Now we have to show that the reduction is correct.

• Assume that F is satisfiable. In this case we will show that G has a clique of size k. If F is

satisfiable, then, in the satisfying assignment, there will be at least one literal in each clause

whose value is T . Let σi be a literal in Ci whose value is T in the satisfying assignment, for

1 ≤ i ≤ k. Then, consider the nodes (σ1, 1), (σ2, 2), . . . , (σk, k). Every pair of these nodes

is connected by an edge in G since each node corresponds to a distinct clause and no two

of the literals σ1, σ2, . . . , σk negate each other. In other words, G has a clique of size k.

• Now assume that G has a clique of size k. Let the nodes that form a clique be

(σ1, 1), (σ2, 2), . . . , (σk, k). Then, the following assignment will satisfy F : σi = T , for

1 ≤ i ≤ k. This is because σi is in Ci, for 1 ≤ i ≤ k. Also, no two of the literals

σ1, σ2, . . . , σk can negate each other and hence all of these literals can be set to T and there

will not be any conflicts.

• In summary, we have shown that SAT ∝ Clique and hence Clique is also NP-complete.

�

1

Optimization and Decision Versions of Problems

• If there exists an efficient algorithm to solve the decision version of a problem, then we can

also devise an efficient algorithm for solving the optimization version.

• As an example, consider the Clique problem. Assume that there exists a deterministic

polynomial time algorithm CLQ to solve the decision version of the problem. In particular,

given a graph G(V,E) and an integer k (1 ≤ k ≤ |V |), CLQ decides in p(n) time if G has

a clique of size k or not. Here p(n) is a polynomial of constant degree. We can use CLQ to

solve the optimization problem also in a deterministic polynomial time. Specifically, this

algorithm will identify the largest k such that G has a clique of size k, given any graph

G(V,E) as the input. Here is such an algorithm:

for k = |V | downto 1 do

if CLQ(G(V,E); k) then output k and quit;

The run time of the above algorithm is O(n p(n)) which is a constant degree polynomial.

• As another example, consider the SUBSET SUM problem. This problem takes as input a

set S = {a1, a2, . . . , an} of real numbers and another real number A. The problem is to

check if there exists a subset S ′ of S such that the sum of all the elements in S ′ is A. An

optimization version of the problem will also have a set S and a number A as the input.

If there exists a subset S ′ of S whose elements sum to A, then we are required to find one

such subset.

• Assume that SSET is a deterministic algorithm for solving the decision version of the SUB-

SET SUM problem whose run time is a constant degree polynomial in n. Consider the

following algorithm that finds a subset S ′ of S whose elements sum to A (if there is one

such subset):

for i = 1 to n do

if the elements in S sum to A then output S and quit;

if SSET(S − {ai}) then S = S − {ai};

Let p(n) be the run time of SSET. Then SSET is called at most n times. These calls will

cost O(n p(n)) time. Also, the elements in S are summed at most n times. The total

time needed for these sums will be O(n2). Thus the total run time of this algorithm is

O(n p(n) + n2) which is a constant degree polynomial.

2

Node Cover Decision Problem (NCDP) is NP-complete

• The NCDP takes as input an undirected graph G(V,E) and an integer k (for some k,

1 ≤ k ≤ |V |). The problem is to check if G has a node cover of size k.

• A node cover for an undirected graph G(V,E) is a subset V ′ of V such that for every

edge (a, b) ∈ E, either a is in V ′ or b is in V ′. As an example, if V = {1, 2, 3, 4} and

E = {(1, 2), (1, 4), (2, 4), (2, 3), (4, 3), (3, 5), (4, 5)}, then, the following are two possible node

covers: {1, 3, 4} and {2, 4, 5}.

• Lemma: NCDP is NP-complete.

Proof: It is easy to show that NCDP in in NP . We’ll show that Clique ∝ NCDP. Let

(G(V,E); k) be any input for the Clique problem and let n = |V |. We generate the following

instance for the NCDP: (G′(V,E ′);n − k), where (a, b) ∈ E ′ if (a, b) 6∈ E and (a, b) 6∈ E ′
if (a, b) ∈ E (for every pair of distinct nodes a and b in V). G′(V,E ′) is known as the

complement of G(V,E). Clearly, G′ can be constructed in O(n2) time.

Assume that G has a clique of size k. Let the set of nodes that form a clique be A =

{v1, v2, . . . , vk}. No two of these nodes will be connected by an edge in G′. This means in

any node cover for G′ there is no need to include any of these nodes. In other words, V −A
is a node cover for G′ and |V − A| = n− k.

Now assume that G′ has a node cover of size n− k. Let the set of nodes that form a cover

be B = {u1, u2, . . . , un−k}. Let C = V −B = {w1, w2, . . . , wk}. No two nodes in C will be

connected by an edge in G′. This is beacuse if (wi, wj) is an edge in G′ (for some i and j),

then at least one of these nodes should be in the node cover. This means that each pair of

nodes in C will be connected by an edge in G. This means that G has a clique of size k.

In summary, Clique ∝ NCDP and hence NCDP is also NP-complete. �

3

