
CSE 3500 Algorithms and Complexity – Fall 2016

Lecture 25: November 29, 2016

Intractable Problems

• There are many problems for which the best known algorithms take a very long time (e.g.,

exponential in some of the input parameters). No one has been able to prove that these

problems are difficult and need this much time. Thus there is a gap in our understanding

of these problems. We refer to these problems as intractable problems. Two examples are:

Satisfiability (SAT) and Clique.

• In the last lecture we showed that SAT can be solved in O(2n|F |) time on any CNF Boolean

forumla F on n variables. We also proved that we can solve the clique problem in O(
(
n
k

)
k2)

time on a graph with n nodes, k being the target clique size.

• These intractable problems have some properties in common. We’ll identify them next.

Nondeterminstic Algorithms

• A decision problem is one that has only two possible answers, namely, yes and no. For any

problem, we can think of a decision version and an optimization version of it. For example,

for the clique problem a decision version will have a graph G(V,E) and an integer k

(1 ≤ k ≤ |V |) as input. The problem is to check if G has a clique of size k. An optimization

version will have a graph G(V,E) as the input and the problem is to identify the largest

integer k (1 ≤ k ≤ |V |) such that G has a clique of size k. If we have an efficient algorithm

for the decision version of a problem, we might also be able to get an efficient algorithm

for the optimization version. In our discussion of intractable problems, we consider only

decision problems.

• A nondeterministic algorithm uses the same set of basic operations as a deterministic

algorithm except that it has access to another operation called Choice. Choice takes as

input a set S and returns an element of S. There is no rule that specifies how this choice

has to be made. Whenever there is a set of choices that leads to a successful completion of

the algorithm, then one such set of choices is always made.

• There are two phases in any nondeterministic algorithm. In the first phase Choice is used

(possibly multiple times) to guess a solution to the problem at hand. The second phase is

deterministic and is used to check the correctness of the guesses made in the first phase.

• Here is a nondeterministic algorithm for SAT: (Let F be the input Boolean CNF formula

on n variables x1, x2, . . . , xn).

1

Phase 1

for i = 1 to n do

xi =Choice{T, F};
Phase 2

Check if the assignment guessed in Phase 1 satisfies F ;

Run time analysis: Phase 2 takes O(|F |) time. In Phase 1, n calls are made to Choice

and each such call takes one unit of time. Thus the total run time of the algorithm is

O(n+ |F |). This is indeed a linear time algorithm!

• Here is a nondeterministic algorithm for solving the clique problem. Let the input be the

graph G(V,E) and the integer k:

Phase 1

S = ∅;
for i = 1 to k do

x =Choice(V); S = S ∪ {x};
Phase 2

Check if the k nodes in S form a clique;

Run time analysis: If we assume that the graph is in adjacency matrix form, then Phase

2 can be completed in O(k2) time. Phase 1 takes k steps. Thus the total run time is O(k2).

The complexity classes P and NP
• By a polynomial time we mean a run time of O(nc) where c is any constant.

• The complexity class P is the collection of all the problems that can be solved in deter-

ministic polynomial time. Example problems in P : sorting, MST, matrix multiplication,

etc.

• The complexity class NP is the collection of all the problems that can be solved in nondter-

ministic polynomial time. Example problems in NP : SAT, Clique, traveling salesperson

problem, etc.

• One of the long-time unanswered questions is: “Is P = NP?”

• If a problem is in P , then, trivially, it is also in NP . Thus we infer: P ⊆ NP .

2

Polynomial Time Reductions

• We say that a problem π1 reduces to another problem π2 if we can solve the problem π1
using an algorithm known for solving π2.

• For example, if π1 is selection and π2 is sorting, then π1 reduces to π2.

• If the problem π1 reduces to the problem π2, then it should be possible to convert any

input x1 for π1 into a corresponding input x2 for π2. We can then solve π2 on x2 to get the

answer y2 (for π2). y2 is then converted into a relevant output y1 for π1.

• The steps involved in reducing π1 to π2 are summarized in the following figure:

• We say that a problem π1 polynomially reduces to the problem π2 if π1 reduces to π2 and

Converter 1 and Converter 2 take a (deterministic) polynomial time each. We use the

following notation: π1 ∝ π2.

NP-hard and NP-complete Problems

• A problem π is said to be NP-hard if the problem π′ polynomially reduces to π for every

π′ ∈ NP .

• The problem π is said to be NP-complete is π is NP-hard and π ∈ NP .

• Cook’s Theorem: Cook showed that SAT is NP-complete. He showed that a Boolean

formula in CNF can be constructed in polynomial time such that it simulates each and

every step of a non-deterministic machine that runs for a polynomial amount of time. If

the machine solves a problem π, then the Boolean formula will have a satisfying assignment

if and only if the machine terminates with the answer yes.

• An equivalent definition for NP-complete problems: A problem π is NP-comlete

if π ∈ NP and π′ ∝ π, for some problem π′ that is known to be NP-complete. This is the

definition that is typically used to show NP-completeness of problems.

3

• Lemma: If the problem π is NP-complete and if π ∈ P , then P = NP .

Proof: Let π′ be any problem in NP . If π is NP-complete and π ∈ P , then we will show

that π′ ∈ P that will imply that P = NP .

Since π is NP-complete, it follows that π′ ∝ π for any π′ ∈ NP . Let x′ be any input for

π′. It follows that we can convert x′ into a corresponding input x for π in deterministic

polynomial time. Let this polynomial be q(.). Let y be the answer of π on x. It also follows

that y can be converted into a corresponding output y′ for π′ in deterministic polynomial

time. Let this polynomial be r(.) Since π ∈ P , we can solve π on x in a determinstic

polynomial time. Let this polynomial be p(.).

Let the size of the input x′ be n. Then we realize that the size of x cannot be more than

q(n) and that the size of y cannot be more than p(q(n)). As a result, it follows that π′ can

be solved deterministically in time q(n) + p(q(n)) + r(p(q(n))) which is a constant degree

polynomial in n. Specifically, if the degrees of the polynomials q(.), p(.), and r(.) are d1, d2,

and d3, respectively, then the above run time is a polynomial of degree d1d2d3. �

• Along the same lines we can also prove the following Lemma.

Lemma: If π1 ∝ π2 and π2 ∝ π3, then, π1 ∝ π3.

NP-completeness Proofs

• There are two steps involved in proving that a problem π is NP-complete: 1) show that

π ∈ NP – this is often easy; and 2) Show that π′ ∝ π for some known NP-complete

problem π′.

• To show that π1 ∝ π2 there are three steps: 1) Present an algorithm for Converter 1; 2)

Show that this algorithm takes (deterministic) polynomial time; and 3) Prove that this

reduction is correct. This involves two substeps: a) Prove that if the answer of π1 on x1 is

yes then the answer of π2 on x2 is also yes and b) Show that if the answer of π1 on x1 is

no then the answer of π2 on x2 is also no.

Clique is NP-complete

• Now we will show that Clique is NP-complete. We have already shown that Clique is a

member of NP .

• We will show that SAT ∝ Clique.

• Let F = C1∧C2∧· · ·∧Ck be any Boolean formula in CNF. Here C1, C2, . . . , Ck are clauses,

where each clause if a disjunction of literals. (A literal is either a variable or its negation).

The input for the Clique problem will be a graph and an integer.

4

• We generate the following input for Clique: G(V,E); k, where there is a node in G for every

literal in every clause of F . If xq is a literal in Ci, then the node corresponding to this

literal is denoted as (xq, i).

• Two nodes (xq, i) and (xr, j) will be connected by an edge if and only if i 6= j and xq 6= x̄r.

• An Example: Let F = (x1 ∨ x̄2) ∧ (x2 ∨ x3 ∨ x̄1). In this case the input for the

Clique will be G(V,E); 2, where V = {(x1, 1), (x̄2, 1), (x2, 2), (x3, 2), (x̄1, 2)} and E =

{((x1, 1), (x2, 2)), ((x1, 1), (x3, 2)), ((x̄2, 1), (x3, 2)), ((x̄2, 1), (x̄1, 2))}.

• The proof will be completed in the next lecture.

5

