

CSE 3500 Algorithms and Complexity – Fall 2016

Lecture 24: November 17, 2016

Parallel Sorting

• A number of parallel sorting algorithms have been proposed in the literature. The first

deterministic optimal parallel algorithm proposed was by AKS in 1981. This was for

a sorting network. Reischuk paralellized Frazer and McKellar’s algorithm on the CRCW

PRAM to get an asymptotically optimal randomized sorting algorithm (1981). A summary

of some of these algorithms is shown in the following Table. In this table, ε is any constant

greater than zero.

Authors Year Model P T R/D

Batcher 1961 Hypercube n 1
2

log2 n D

Preparata 1971 CREW PRAM n log n O(log n) D

Ajtai, Komlos, and Szemeredi 1981 Sorting n/w n O(log n) D

Reischük 1981 CRCW PRAM n Õ(log n) R

Reif and Valiant 1985 CCC n Õ(log n) R

Rajasekaran and Reif 1987 CRCW PRAM n(log n)ε Õ
(

logn
log logn

)
R

Cole 1988 CRCW PRAM n(log n)ε O
(

logn
log log logn

)
D

• We will discuss Preparata’s algorithm that uses the following Lemma proven by Valiant:

Lemma 1: We can merge two sorted sequences of length n each in O(log log n) time using

n CREW PRAM processors.

• Before presenting Preparata’s algorithm we will state and prove the slow-down lemma.

• The slow-down lemma: If a parallel algorithm runs in time T on a P -processor machine

M , then the same algorithm can be run on a P ′-processor machine M ′ in O
(
PT
P ′

)
time, for

any P ′ ≤ P .

• Proof: We will simulate the machine M on the machine M ′. Specifically, processor 1 of

M ′ will be in-charge of simulating the first
⌈
P
P ′

⌉
processors of M ; processor 2 of M ′ will be

in-charge of simulating the next
⌈
P
P ′

⌉
processors of M ; and so on.

If we do so, then each parallel step of M can be simulated in ≤
⌈
P
P ′

⌉
steps on M ′. Thus

the entire algorithm under concern can be simulated on M ′ in no more than T
⌈
P
P ′

⌉
≤

T
(
P
P ′ + 1

)
= O

(
PT
P ′

)
time. �

1

• Now we are ready to see Preparata’s algorithm. The basic idea behind Preparata’s algo-

rithm is to compute the rank of each element and output the elements in the order of their

ranks. Let X = k1, k2, . . . , kn be the input and let P = n log n. Detailed steps follow.

0) Partition X into log n parts X1, X2, . . . , Xlogn where each part has n
logn

keys;

1) for i = 1 to log n in parallel do

2) Sort Xi recursively using n processors to get Si;

3) for 1 ≤ i, j ≤ log n in parallel do

4) Merge Si with Sj using n
logn

processors;

5) for i = 1 to n in parallel do

6) Using log n processors compute the global rank ri of ki by

7) adding the log n partial ranks computed in Step 4;

8) for 1 ≤ i ≤ n in parallel do

9) Processor i writes ki in cell ri;

• Run time analysis: Let T (n) be the run time of this algorithm on any input of size n

when the number of processors used is n log n. Step 1 takes no more than T
(

n
logn

)
time.

In Step 3, for every i and j, we are merging Si with Sj. Si and Sj are of size n
logn

each.

Thus we can merge them in O
(

log log
(

n
logn

))
= O(log log n) time (c.f. Lemma 1). Let S

be one of the sorted sequences obtained in Step 1 and let k be any key in S. By looking

at the position of k in S, we get to know how many keys of S are less than k. When S

is merged with Si (for any i), we get to know how many keys of Si are less than k. As a

result, we get to know log n partial ranks for each input key at the end of Step 3. If we

add up these partial ranks and add 1, we will get the global rank of k. This is what we

do in Step 5. This addition can be done using the prefix computation algorithm. Note

that in Step 3, for each key, we have to add log n integers using log n processors and hence

Step 5 will take O(log log n) time. Step 8 takes one unit of time. In summary, we get the

following recurrence relation for T (n):

T (n) ≤ T

(
n

log n

)
+O(log log n).

We can use repeated substitutions to infer that T (n) = O(log n). Thus we get the following

Theorem.

• Theorem. We can sort n arbitrary elements in O(log n) time using n log n CREW PRAM

processors. �

2

Intractable Problems

• There are many problems for which the best known algorithms take a very long time (e.g.,

exponential in some of the input parameters). No one has been able to prove that these

problems are difficult and need this much time. Thus there is a gap in our understanding

of these problems. We refer to these problems as intractable problems. Two examples are:

Satisfiability (SAT) and Clique.

• SAT: For this problem the input is a Boolean formula in Conjunctive Normal Form (CNF)

on n variables. The problem is to check if there is an assignment to the variables under

which the value of the formula is true (T). A Boolean formula is in CNF if it is a conjunction

of disjunctions.

• F = (x̄1 ∨ x2 ∨ x4) ∧ (x2 ∨ x̄5) ∧ (x4 ∨ x1) is a formula in CNF.

• We can solve the above problem in O(2n|F |) time. This is because we can compute the

value of the formula under each possible assignment. There are 2n possible assignments

and on each such assignment we can compute the value of F in O(|F |) time.

• Clique: The input for this problem are an undirected graph G(V,E) and an integer

k, 1 ≤ k ≤ |V |. The task is to check if G has a clique of size k. A clique is nothing but a

subgraph that is complete. We want to check if there exists a subset of k nodes in G such

that each pair of nodes in this subset is connected by an edge.

• We can solve the clique problem in O
((
n
k

)
k2
)

time, where n = |V |. This is beacuse there

are
(
n
k

)
subsets of k nodes. For each such subset, checking if the nodes form a clique can

be done in O(k2) time (assuming that the graph is in adjacency matrix form).

• In the next class, we will describe some commonalities across these seemingly difficult

problems.

3

