

e ——
e ——

- - TTT—

— 1 .
| | { 1.
- | 1 i!‘l ‘
\ l A Y | | - s
| ' y 'j . '
.k‘ o

CSE 3500 Algorithms and Complexity — Fall 2016
Lecture 23: November 15, 2016

Parallel Algorithms: Prefix Computation

e Input: A sequence X = ki, ko,...,k, of elements from a domain Y. & is a binary,
associative, and unit operation defined on . Recall that an operation & on ¥ is associative
if for any three elements z, y, z in X, the following holds: 2@ (y®z) = (zDy)Dz = 2Dy D 2.

e Output: ki, ky @ ko, k1 ©ky D ks, ..., ki Dk @ -+ k.

A Divide-and-conquer Algorithm for Prefix Computation

e We will first discuss a divide-and-conquer parallel algorithm that employs n CREW PRAM
Processors.

e Step 0) We partition the input into two equal halves: X; = ki, ky, ..., ky2 and X, =
knj2y+1s k212, - - 5 kn.

e Step 1) 5 processors recursively perform a prefix computation on X;. Let the output
be ki, kg, ... k) Jo; At the same time the other 3 processors recursively perform a prefix

2
computation on Xs. Let the output be an/Z)—Q—l’ kEn/2)+2’ ok

e Note that k1, k), ... k] /o 1s indeed the first half of the prefix outputs for X. Thus we can
output these without any modifications.

e Step 3) We can modify k‘én J2)417 k:En YIS k;, by pre-adding k! /o to every element. (Here
the word ‘adding’ refers to the operator &). The modified values will be the second half
of the prefix outputs for X. This modification can be done in O(1) time using § CREW
PRAM processors.

Run time analysis: Like for any recursive algorithm, we have to write a recurrence relation
for the run time, and solve it. Let T'(n) be the run time of the above algorithm on any input of
size n, where the number of processors used is n.

Then we get the following recurrence relation: T'(n) = T(n/2) + O(1) which solves to
T(n) = O(logn). As a result, we get the following Lemma.

Lemma 1: We can solve the prefiz computation problem on any input of size n in O(logn) time
using n CREW PRAM processors. [

An Optimal Prefix Computation Algorithm

e We can get an optimal prefix computation algorithm using a technique due to Richard
Brent. The idea is to reduce the input size sufficiently, employ a nonoptimal algorithm to
solve the problem on the reduced input, and use these results to obtain the results for the
original input. Let P = $ and let X = kq, ko, ..., k, be the input. A detailed description
is given below.

0) Assign logn elements per processor. Specifically, assign the elements
k(i—l)logn+17 k(i—l)logn-ﬁ-Qu SR kilogn to processor i’ for 1 <1< P;
1) for i = 1 to P in parallel do

2) Processor i performs a prefix computation on its logn elements
k(i—l) logn+1> k(i—l) logn+2y - -+ kl logn to get
k,/ k/ / .
(i—1)logn+1> "(:—1)logn+2> - * " Vilogn>
3) P processors collective perform a prefix computation on
k{ogn, kélogn, ..., k] to get
/! /! k//.
logn’ "2logny * * *» Vny
4) for i = 2 to n in parallel do
5) Processor i outputs kzg’i_l)logn D kEi_l)bgnH,

1" / " / .
k(i—l)logn D k(i—l)logn—i—Q’ Tt k(i—l)logn & kilogn’

Run time analysis: Step 2 takes O(logn) time. In step 3 we have to perform a prefix com-

putation on -2 elements using -"— processors. Using Lemma 1, we infer that Step 3 takes
gn ogn

O <log< 1)) = O(logn) time. Step 5 takes O(logn) time. Thus the total run time of the

logn

algorithm is O(logn) resulting in the following Lemma.

Lemma 2: We can solve the prefix computation problem on any input of size n in O(logn) time
using % CREW PRAM processors. [

Observation: The above algorithm is asymptotically optimal since S = n and the work done
by the parallel algorithm is O(n).

Some Applications

e Numerous problems can be solved efficiently by reducing them to prefix computations.
We'll see two examples.

o Computing the rank of an element: Here we are given a sequence X = ki, ks,..., k, of
arbitrary real numbers and a number £ € X. The goal is to compute the rank of k£ in X.
(Recall that rank(k, X) = |{q € X : ¢ < k}| +1). This problem can be reduced to prefix
sums computation as follows.

1) Create a bit array a[l : n| such that afi] = 1 if k; < k and
afi] = 0 otherwise, for 1 < i < n.
2) Compute the prefix sums of a[l],a[2],...,a[n] to get b[1],b[2],...,b[n];
3) Output bn| + 1;
e Observe that step 1 can be done in O(logn) time using —>— CREW PRAM processors (by

logn

assigning log n input elements per processor). Step 2 takes O(logn) time using —— CREW

logn

PRAM processors (c.f. Lemma 2). Step 3 takes 1 unit of time. Thus the entire algorithm
runs in O(logn) time using == CREW PRAM processors.

logn

As a corollary to the above algorithm, we can sort n given elements in O(logn) time using
10"g2n CREW PRAM processors. The idea is to assign % processors per key and com-
pute its rank in parallel. Followed by this, the keys are output based on their ranks. Let

X =kq, ko, ..., k, be the input.

1) for + = 1 to n in parallel do

[\

)

) Using @ processors compute the rank r; of k;;
3) for i =1 to n in parallel do

)

e~

Processor @ outputs k; in memory cell r;;

Splitting an input sequence: Here the input is a sequence X = ki, ko, ..., k, of arbitrary
real numbers and another real number k. The goal is to permute X such that all the
elements of X that are smaller than k appear before the rest of the elements. We can also
reduce this problem to prefix computations as follows.

1) Create a bit array a[l : n| such that afi] = 1 if k; < k and

ali] = 0 otherwise, for 1 < i < n.
2) Compute the prefix sums of a[l],a[2], ..., a[n] to get b[1],b[2],...,b[n];
3) for i = 1 to n in parallel do
4) if k; < k then write k; in cell b[i];
/* Note that all the elements less than k£ have now

been placed in successive cells */

5) Place the elements of X that are > k in a similar manner;

Run time analysis: Step 1 can be done in O(logn) time using Togn Processors (by
assigning logn elements per processor). Step 2 takes O(logn) time (c.f. Lemma 2). Step
3 also can be done in O(logn) time (if we assign logn elements per processor). Steps 1
through 4 thus take a total of O(logn) time. As a result, Step 5 will also take the same
amount of time. Therefore, the total run time of the algorithm is O(logn).

Parallel Sorting

e A number of parallel algorithms have been proposed in the literature. The first deter-
ministic optimal parallel algorithm proposed was by AKS in 1981. This was for a sorting
network. Reischuk paralellized Frazer and McKellar’s algorithm on the CRCW PRAM to
get an asymptotically optimal randomized sorting algorithm (1981). In the next Lecture
we will study Preparata’s algorithm.

