

CSE 3500 Algorithms and Complexity – Fall 2016

Lecture 23: November 15, 2016

Parallel Algorithms: Prefix Computation

• Input: A sequence X = k1, k2, . . . , kn of elements from a domain Σ. ⊕ is a binary,

associative, and unit operation defined on Σ. Recall that an operation ⊕ on Σ is associative

if for any three elements x, y, z in Σ, the following holds: x⊕(y⊕z) = (x⊕y)⊕z = x⊕y⊕z.

• Output: k1, k1 ⊕ k2, k1 ⊕ k2 ⊕ k3, . . . , k1 ⊕ k2 ⊕ · · · kn.

A Divide-and-conquer Algorithm for Prefix Computation

• We will first discuss a divide-and-conquer parallel algorithm that employs n CREW PRAM

processors.

• Step 0) We partition the input into two equal halves: X1 = k1, k2, . . . , kn/2 and X2 =

k(n/2)+1, k(n/2)+2, . . . , kn.

• Step 1) n
2

processors recursively perform a prefix computation on X1. Let the output

be k′1, k
′
2, . . . , k

′
n/2; At the same time the other n

2
processors recursively perform a prefix

computation on X2. Let the output be k′(n/2)+1, k
′
(n/2)+2, . . . , k

′
n.

• Note that k′1, k
′
2, . . . , k

′
n/2 is indeed the first half of the prefix outputs for X. Thus we can

output these without any modifications.

• Step 3) We can modify k′(n/2)+1, k
′
(n/2)+2, . . . , k

′
n by pre-adding k′n/2 to every element. (Here

the word ‘adding’ refers to the operator ⊕). The modified values will be the second half

of the prefix outputs for X. This modification can be done in O(1) time using n
2

CREW

PRAM processors.

Run time analysis: Like for any recursive algorithm, we have to write a recurrence relation

for the run time, and solve it. Let T (n) be the run time of the above algorithm on any input of

size n, where the number of processors used is n.

Then we get the following recurrence relation: T (n) = T (n/2) + O(1) which solves to

T (n) = O(log n). As a result, we get the following Lemma.

Lemma 1: We can solve the prefix computation problem on any input of size n in O(log n) time

using n CREW PRAM processors. �

1

An Optimal Prefix Computation Algorithm

• We can get an optimal prefix computation algorithm using a technique due to Richard

Brent. The idea is to reduce the input size sufficiently, employ a nonoptimal algorithm to

solve the problem on the reduced input, and use these results to obtain the results for the

original input. Let P = n
logn

and let X = k1, k2, . . . , kn be the input. A detailed description

is given below.

0) Assign log n elements per processor. Specifically, assign the elements

k(i−1) logn+1, k(i−1) logn+2, . . . , ki logn to processor i, for 1 ≤ i ≤ P ;

1) for i = 1 to P in parallel do

2) Processor i performs a prefix computation on its log n elements

k(i−1) logn+1, k(i−1) logn+2, . . . , ki logn to get

k′(i−1) logn+1, k
′
(i−1) logn+2, . . . , k

′
i logn;

3) P processors collective perform a prefix computation on

k′logn, k
′
2 logn, . . . , k

′
n to get

k′′logn, k
′′
2 logn, . . . , k

′′
n;

4) for i = 2 to n in parallel do

5) Processor i outputs k′′(i−1) logn ⊕ k′(i−1) logn+1,

k′′(i−1) logn ⊕ k′(i−1) logn+2, . . . , k
′′
(i−1) logn ⊕ k′i logn;

Run time analysis: Step 2 takes O(log n) time. In step 3 we have to perform a prefix com-

putation on n
logn

elements using n
logn

processors. Using Lemma 1, we infer that Step 3 takes

O
(

log
(

n
logn

))
= O(log n) time. Step 5 takes O(log n) time. Thus the total run time of the

algorithm is O(log n) resulting in the following Lemma.

Lemma 2: We can solve the prefix computation problem on any input of size n in O(log n) time

using n
logn

CREW PRAM processors. �

Observation: The above algorithm is asymptotically optimal since S = n and the work done

by the parallel algorithm is O(n).

Some Applications

• Numerous problems can be solved efficiently by reducing them to prefix computations.

We’ll see two examples.

• Computing the rank of an element: Here we are given a sequence X = k1, k2, . . . , kn of

arbitrary real numbers and a number k ∈ X. The goal is to compute the rank of k in X.

(Recall that rank(k,X) = |{q ∈ X : q < k}| + 1). This problem can be reduced to prefix

sums computation as follows.

2

1) Create a bit array a[1 : n] such that a[i] = 1 if ki < k and

a[i] = 0 otherwise, for 1 ≤ i ≤ n.

2) Compute the prefix sums of a[1], a[2], . . . , a[n] to get b[1], b[2], . . . , b[n];

3) Output b[n] + 1;

• Observe that step 1 can be done in O(log n) time using n
logn

CREW PRAM processors (by

assigning log n input elements per processor). Step 2 takes O(log n) time using n
logn

CREW

PRAM processors (c.f. Lemma 2). Step 3 takes 1 unit of time. Thus the entire algorithm

runs in O(log n) time using n
logn

CREW PRAM processors.

• As a corollary to the above algorithm, we can sort n given elements in O(log n) time using
n2

logn
CREW PRAM processors. The idea is to assign n

logn
processors per key and com-

pute its rank in parallel. Followed by this, the keys are output based on their ranks. Let

X = k1, k2, . . . , kn be the input.

1) for i = 1 to n in parallel do

2) Using n
logn

processors compute the rank ri of ki;

3) for i = 1 to n in parallel do

4) Processor i outputs ki in memory cell ri;

• Splitting an input sequence: Here the input is a sequence X = k1, k2, . . . , kn of arbitrary

real numbers and another real number k. The goal is to permute X such that all the

elements of X that are smaller than k appear before the rest of the elements. We can also

reduce this problem to prefix computations as follows.

1) Create a bit array a[1 : n] such that a[i] = 1 if ki < k and

a[i] = 0 otherwise, for 1 ≤ i ≤ n.

2) Compute the prefix sums of a[1], a[2], . . . , a[n] to get b[1], b[2], . . . , b[n];

3) for i = 1 to n in parallel do

4) if ki < k then write ki in cell b[i];

/* Note that all the elements less than k have now

been placed in successive cells */

5) Place the elements of X that are > k in a similar manner;

Run time analysis: Step 1 can be done in O(log n) time using n
logn

processors (by

assigning log n elements per processor). Step 2 takes O(log n) time (c.f. Lemma 2). Step

3 also can be done in O(log n) time (if we assign log n elements per processor). Steps 1

through 4 thus take a total of O(log n) time. As a result, Step 5 will also take the same

amount of time. Therefore, the total run time of the algorithm is O(log n).

3

Parallel Sorting

• A number of parallel algorithms have been proposed in the literature. The first deter-

ministic optimal parallel algorithm proposed was by AKS in 1981. This was for a sorting

network. Reischuk paralellized Frazer and McKellar’s algorithm on the CRCW PRAM to

get an asymptotically optimal randomized sorting algorithm (1981). In the next Lecture

we will study Preparata’s algorithm.

4

