




















CSE 3500 Algorithms and Complexity – Fall 2016

Lecture 21: November 8, 2016

Parallel Algorithms

• In the last lecture we showed that T ≥ S
P

where T is the parallel run time needed to solve

any given problem using P processors, given that S is the best known sequential run time

known to solve the same problem.

• In this lecture we will introduce parallel models of computing and study parallel algorithms

for some fundamental problems.

Some Basic Definitions

• We say that a parallel algorithm for a given problem is optimal if T = S
P

, where T is the

parallel run time of the algorithm, P is the number of processors used, and S is the best

known sequential run time for solving this problem.

• We say that a parallel algorithm is asymptotically optimal if T = O
(
S
P

)
, where T is the

parallel run time, P is the number of processors, and S is the best known sequential run

time.

• The work done by a parallel algorithm is defined to be PT , where P is the number of

processors used and T is the parallel run time.

• The speedup obtained by a parallel algorithm is defined to be S
T

, where S is the sequential

run time and T is the parallel run time.

Parallel Models of Computing

• When it comes to sequential computing, the Random Access Machine (RAM) model has

been widely accepted. In this model we assume that each basic operation takes one unit

of time and calculate the run times of algorithms as the total number of basic operations

performed in the algorithms.

• In contrast, numerous computing models have been introduced in the domain of parallel

computing. These models differ in how inter-processor communications are enabled.

• Parallel models can be broadly categorized into two: fixed connection machines and shared

memory machines (also known as Parallel Random Access Machines (PRAMs)).

1



Fixed Connection Machines

• A fixed connection machine is nothing but a directed graph G(V,E) where each node

corresponds to a processor and each edge corresponds to a communication link. Example

fixed connection machines include linear array, mesh, hypercube, etc.

• In a fixed connection machine, if two nodes are connected by an edge they can communicate

in one unit of time. If the two nodes that want to communicate are not connected by an

edge, then the communication will happen along a path connecting these two nodes.

Parallel Random Access Machines

• A PRAM is a collection of identical processors, where each processor is a RAM. Commu-

nication takes place by writing into and reading from memory cells.

• For example, if processor i wants to communicate with processor j, then processor i can

write a message in memory cell j; which then can be read by processor j in the next step.

• Note that processors i and j can communicate in two steps, independent of i and j. Thus

one could perhaps think of a PRAM as a fixed connection machine where the underlying

graph is complete.

• A PRAM is a synchronous machine with a global clock.

• Note that there could be conflicts in a PRAM for writing and/or reading. Depending on

how these conflicts are resolved, we have several variants.

• In an Exclusive Read Exclusive Write (EREW) PRAM, in any time step, only one processor

can either read from or write into any memory cell at the same time. Different procesors

could read from or write into different distinct cells at the same time though.

• In a Concurrent Read Exclusive Write (CREW) PRAM, any number of processors can read

from the same memory cell at the same time. However, at any time step any memory cell

can be accessed by at most one processor for writing into.

• In a Concurrent Read Concurrent Write (CRCW) PRAM, both concurrent reads and con-

current writes are permitted.

• When we enable concurrent reads, processors that are conflicting will get to read the same

message. If we enable concurrent writes, the conflicting processors might have different

messages that they are trying to write. Thus we need a special maechanism to resolve

write conflicts. Depending on how we do this, there could be variants.

2



• In a Common CRCW PRAM, the conflicting processors must have the same message that

they are trying to write. In an Arbitrary PRAM, if there is a write conflict, an arbitrary

one of the conflicting processors will succeed in writing. (Our algorithm should be correct

independent of who gets to write). In a Priority CRCW PRAM, write conflicts are resolved

based on priorities assigned to the processors. These priorities are typically static.

• In terms of computational power these models form a hierarchy. Here is a list in increasing

order of computational power: EREW PRAM, CREW PRAM, Common CRCW PRAM,

Arbitrary CRCW PRAM, and Priority CRCW PRAM.

• There are separation results among these models. To show that one model is more powerful

than another, we just have to identify one problem that can be more efficiently solved on

one model than the other.

• In a PRAM, we assume that the input as well as the output will be given in the common

memory.

Boolean And Problem

• Consider the following problem: Input is a sequence b1, b2, . . . , bn of bits. The problem is

to compute the Boolean And of these n bits.

• Clearly, this problem can be solved sequentially in n− 1 time steps. (Ignoring −1) S = n.

• Lemma: This problem can be solved in O(1) time using n common CRCW PRAM pro-

cessors.

• Proof: Here is an algorithm:

0) Processor i is assigned bi, for 1 ≤ i ≤ n;

1) Processor 1 writes a 1 in Result (Result being a memory cell);

3) for i = 1 to n in parallel do

4) if bi = 0 then processor i tries to write zero in Result;

• The correctness of the above algorithm is clear. Even if there is a single zero bit in the

input, in step 4 Result will be changed to zero. Also, steps 1 and 4 take O(1) time each

implying that the total run time is O(1). �

• The above algorithm is asymptotically optimal since T = O
(
S
P

)
.

3



Finding the Minimum Element

• For this problem, the input is a sequence X = k1, k2, . . . , kn of arbitrary real numbers. The

problem is to output the smallest element of X.

• For this problem also, S = n.

• Lemma: We can find the minimum of n given elements in O(1) time using n2 common

CRCW PRAM processors.

• Proof: We make use of the Boolean And algorithm as a subroutine. Details follow.

0) Let the processors be labelled P1,1, P1,2, . . . , P1,n, P2,1, P2,2, . . . , P2,n, · · · , Pn,1, Pn,2, . . . , Pn,n;

The processors are grouped into n groups, where Gi = {Pi,1, Pi,2, . . . , Pi,n},
for 1 ≤ i ≤ n. Group Gi is assigned ki and Gi is required to check if ki is the

smallest element of X;

1) for 1 ≤ i, j ≤ n in parallel do

2) Pi,j computes a bit bi,j = “Is ki ≤ kj?”;

3) for i = 1 to n in parallel do

4) Processors in Gi collectively compute ci = bi,1 ∧ bi,2 ∧ · · · ∧ bi,n;

5) if ci = 1 then Pi,1 tries to write ki in Result;

• The correctness of the above algorithm is clear. Step 2 takes O(1) time. Step 4 takes O(1)

time as well if we use the Boolean And algorithm described above. Step 5 also takes O(1)

time yielding a total run time of O(1). �

• Note that the above algorithm is not asymptotically optimal.

Prefix Computation

• Input: A sequence X = k1, k2, . . . , kn of elements from a domain Σ. ⊕ is a binary,

associative, and unit operation defined on Σ. Recall that an operation ⊕ on Σ is associative

if for any three elements x, y, z in Σ, the following holds: x⊕(y⊕z) = (x⊕y)⊕z = x⊕y⊕z.

• Output: k1, k1 ⊕ k2, k1 ⊕ k2 ⊕ k3, . . . , k1 ⊕ k2 ⊕ · · · kn.

• Prefix computation is a fundmental problem in parallel computing. This problem involves

both local computations and interprocessor communications. A number of problems can

be solved in parallel by reducing them to prefix computation.

• Some examples: 1) Σ = R;⊕ = +; 2) Σ = R;⊕ = min; and 3) Σ = 2× 2 matrices; ⊕ = ∗

4



A Divide-and-conquer Algorithm for Prefix Computation

• We will first discuss a divide-and-conquer parallel algorithm that employs n CREW PRAM

processors.

• We partition the input into two equal halves: X1 = k1, k2, . . . , kn/2 and

X2 = k(n/2)+1, k(n/2)+2, . . . , kn.

• n
2

processors perform a prefix computation on X1. Let the output be k′
1, k

′
2, . . . , k

′
n/2; At

the same time the other n
2

processors perform a prefix computation on X2. Let the output

be k′
(n/2)+1, k

′
(n/2)+2, . . . , k

′
n.

• Note that k′
1, k

′
2, . . . , k

′
n/2 is indeed the first half of the prefix outputs for X. Thus we can

output these without any modifications.

• We can modify k′
(n/2)+1, k

′
(n/2)+2, . . . , k

′
n by pre-adding k′

n/2 to every element. (Here the

word ‘adding’ refers to the operator ⊕). The modified values will be the second half of the

prefix outputs for X.

5


