

\/

CSE 3500 Algorithms and Complexity — Fall 2016
Lecture 20: November 3, 2016

Tree Traversal and Graph Search

e Traversal and search refer to the systematic visiting of the nodes of a tree or a graph,
performing certain operations at each node.

e In the last lecture we showed that we can perform tree traversal in O(n) time, n being the
number of nodes in the tree.

e In this lecture we will focus on searching through a general graph.

e Let G(V, FE) be a given undirected graph that we are interested in searching. There are
several ways of searching. Two popular methods are Breadth-First Search (BFS) and
Depth-First Search (DFS).

e Recall that G can be represented as adjacency lists or an adjacency matrix. Let V =
{1,2,...,n}.
The adjacency lists representation of G is an array A[l : n] of lists. A[i] is a list of all the
neighbors of the node i, 1 < i < n.

The adjacency matrix representation of G is a n x n matrix A such that A7, j] = 1 if there
is an edge from the node i to node j in G; and A[i, j] = 0 otherwise.

e BFS starts from a node, say, u. The node u is visited first. Nodes that are at a distance
of 1 from u are visited next; Nodes that are at a distance of 2 from u are visited next; and
SO On.

Depth First Search (DFS)

e In DFS we start from a node, say, u and visit a neibhor v of u that has not been visited
before; From v we visit a neighbor w of v that has not been visited before, and so on, until
we reach a node z such that all the neighbors of x have already been visited. When this
happens we backtrack to the node y that was visited before x and start the search from v,
etc. The search terminates when we backtrack to the start node u.

e A pseudocode for DFS follows. To begin with, each entry in the array visited|1 : n| is zero.
DFS(u)

1) visited[u] = 1;
2) for cach w € Adj(u) do

3) if lvisited[w] then DFS(w);

Run Time Analysis: Note that, for any node v € V, line 3 is executed d, times where
d, is the degree of u. Lines 1 and 2 are executed for every node u in V. Thus the run time
of this algorithm is O(|V| +>_ .\ du) = O(|V| 4 |E|). This is a linear time algorithm.

The case of multiple components

e The input graph may not be connected. Recall that an undirected graph is said to be
connected if there is a path from every node to every other node in the graph.

e If the graph is not connected, then it has more than one connected components. A connected
component of a graph is a maximal subgraph of the graph that is connected.

e When the input graph has more than one connected components we can modify the algo-
rithm DFS to get the following algorithm DFST:

1) for i =1 ton do
2) visited[i] = 0;
3) DFST(G(V, E))
4) fori=1tondo
) if lvisited|i] then DFS(7);

ot

e Run Time: When DFS is called on any node 4, all the nodes in the connected component
that ¢ belongs to will be visited. Let the number of connected components in G be c. Let
the number of nodes and edges in connected component g be |V,| and |E,|, respectively,
for 1 < g < c. If the node ¢ belongs to connected component ¢, then, the time spent by
DFS(i) will be O(|V,| + |Ey|).

Thus the total run time of the algorithm will be O (ZZ:1(|1/,1| + |Eq|)> =O(|V]| +|E|).

Hints on Problem 7 in Homework 2

e Note that the adjacency matrix A has information about paths of length 1 in the graph.
Specifically, A[i, j| = 1 iff there is an edge from the node i to node j.

e Now consider the matrix A%. A?[i, j] will be 1 only if there is a k such that A[i, k] = 1 and
Alk,j]l = 1, i.e., if there is a path from i to j of length 2.

e Similarly, we can prove by induction that A¥[i,j] = 1 only if there is a path from node i
to node j of length k.

e Therefore, it follows that A* =1 + A4+ A% + ... + A"7L,

e Using the binomial theorem, we can show that I + A+ A? 4 -+ A" = (I + A"

e Let a be a real number and n be an integer. We can compute a” using n— 1 multiplications.
e In fact we can compute a” using only O(logn) multiplications. Consider the case when

n = 29 for some integer ¢q. Then we can repeatedly square elements starting from a to

get the following sequence: a,a?,a?,...,a*". Clearly, the computation of a®* takes only

O(q) = O(logn) multiplications.

e Even when n is not an integral power of two we can compute a™ using O(logn) multipli-

cations. Express n in binary form as: n = Y 7 ;2" where each b; is a bit. Note that
q = O(logn).
q .91 i
a = q2i=0 Y% — Io<i<q) and bizlaz :
e The above equation suggests the following algorithm: 1) Compute the sequence: a,a?, ..., a*

in O(q) time; and 2) Multiply the appropriate powers of a from the above sequence. This
takes O(q) time as well.

The total run time is O(q) = Ologn).

Parallel Algorithms

e The idea of parallel computing is to employ multiple processors to solve a problem.

e Let m be any problem for which the best known sequential algorithm takes S time. Let P
be the number of processors used and let T" be the parallel run time.

} s
Fact: T' > 3.

Proof: by contradiction. Assume to the contrary that there is a parallel algorithm that
takes < % time.

We can sequentially simulate each step of the parallel algorithm in < P steps. This means
that we can sequentially simulate the entire parallel algorithm in a total of < PT' < §
time! This is a contradiction to the fact that S is the best known sequential run time for
solving 7. [

