

GRAPH SEARCH.
IN ROT: AN DIRECTED
GRAPH $G(v, E)$
GOAC: SEARCH Through the Nodes.

BREATH FIST StARCH: (BES)

START FROM NODE 1.
VISIT AC L The NODES AT A DISTANCE OF 1 . NODES 2,4 VISIT the NEIGHBors of these at a distance of 1 .

DEPTH FIRST SERRCH DFS: : $n=|v|$.

Visted $\left[\begin{array}{c}u \\ \hline\end{array}=1 ; * * *\right.$
To evary $\omega \in$ toj (x) do

Rit Rin time $=0|V|+|E|)$

USITED $[i]=0 ; 0(|V|)$

$$
=O(t \mid)
$$

RERRESENTNG A

$$
S(V, E) \text { GRPRH: }
$$

(1) ADJicticy LSis
2) ADJActicy MATRIX.

ADA Acency lists:

$A^{k}[i, j]=1$ if

- a path of length $F A C T: I+A+A^{2}+\cdots=1 \cdot A^{n-1}$
\angle from i to j
$\forall K$.

Computing a^{n}
Consida the cases $n=?^{q}$ for
Some integer?

$$
a, a^{2}, a^{4} a^{8}, a^{16}, a^{32}
$$

wo coly need \& mut. and $?=0 \log n$

PARALLEL ALGORITHMS.

Let π be any problem.
let P be the \# of Processors. lat 1 be the PARACIES RUN Time and Sba the BEET KNranN Sequentic RuN tine,

Example. $S=10 \mathrm{~h}$

$$
P=10 \text {. }
$$

FACT: $T \geqslant \frac{s}{p}$

Proof By Contradiction. Assome that $T<\frac{S}{P}$.

- CONTRADICTOD: DVE II Step Can be sequentially
M^{\prime} (1) 2 (...) SIMULATOD IN P P SteDS.
\Rightarrow The entine Il aly. Com be
MSequentially smulara in SPT Stets. i.e. in less ham s suess.
$\mp A$ Contpeicion.

CSE 3500 Algorithms and Complexity - Fall 2016 Lecture 20: November 3, 2016

Tree Traversal and Graph Search

- Traversal and search refer to the systematic visiting of the nodes of a tree or a graph, performing certain operations at each node.
- In the last lecture we showed that we can perform tree traversal in $O(n)$ time, n being the number of nodes in the tree.
- In this lecture we will focus on searching through a general graph.
- Let $G(V, E)$ be a given undirected graph that we are interested in searching. There are several ways of searching. Two popular methods are Breadth-First Search (BFS) and Depth-First Search (DFS).
- Recall that G can be represented as adjacency lists or an adjacency matrix. Let $V=$ $\{1,2, \ldots, n\}$.
The adjacency lists representation of G is an array $A[1: n]$ of lists. $A[i]$ is a list of all the neighbors of the node $i, 1 \leq i \leq n$.
The adjacency matrix representation of G is a $n \times n$ matrix A such that $A[i, j]=1$ if there is an edge from the node i to node j in G; and $A[i, j]=0$ otherwise.
- BFS starts from a node, say, u. The node u is visited first. Nodes that are at a distance of 1 from u are visited next; Nodes that are at a distance of 2 from u are visited next; and so on.

Depth First Search (DFS)

- In DFS we start from a node, say, u and visit a neibhor v of u that has not been visited before; From v we visit a neighbor w of v that has not been visited before, and so on, until we reach a node x such that all the neighbors of x have already been visited. When this happens we backtrack to the node y that was visited before x and start the search from y, etc. The search terminates when we backtrack to the start node u.
- A pseudocode for DFS follows. To begin with, each entry in the array visited $[1: n]$ is zero.

DFS(u)

1) visited $[u]=1$;
2) for each $w \in \operatorname{Adj}(u)$ do

$$
\text { 3) if !visited }[w] \text { then } \operatorname{DFS}(w) \text {; }
$$

Run Time Analysis: Note that, for any node $u \in V$, line 3 is executed d_{u} times where d_{u} is the degree of u. Lines 1 and 2 are executed for every node u in V. Thus the run time of this algorithm is $O\left(|V|+\sum_{u \in V} d_{u}\right)=O(|V|+|E|)$. This is a linear time algorithm.

The case of multiple components

- The input graph may not be connected. Recall that an undirected graph is said to be connected if there is a path from every node to every other node in the graph.
- If the graph is not connected, then it has more than one connected components. A connected component of a graph is a maximal subgraph of the graph that is connected.
- When the input graph has more than one connected components we can modify the algorithm DFS to get the following algorithm DFST:

1) for $i=1$ to n do
2) \quad visited $[i]=0$;
3) $\operatorname{DFST}(G(V, E))$
4) for $i=1$ to n do
5) if !visited $[i]$ then $\operatorname{DFS}(i)$;

- Run Time: When DFS is called on any node i, all the nodes in the connected component that i belongs to will be visited. Let the number of connected components in G be c. Let the number of nodes and edges in connected component q be $\left|V_{q}\right|$ and $\left|E_{q}\right|$, respectively, for $1 \leq q \leq c$. If the node i belongs to connected component q, then, the time spent by DFS (i) will be $O\left(\left|V_{q}\right|+\left|E_{q}\right|\right)$.
Thus the total run time of the algorithm will be $O\left(\sum_{q=1}^{c}\left(\left|V_{q}\right|+\left|E_{q}\right|\right)\right)=O(|V|+|E|)$.

Hints on Problem 7 in Homework 2

- Note that the adjacency matrix A has information about paths of length 1 in the graph. Specifically, $A[i, j]=1$ iff there is an edge from the node i to node j.
- Now consider the matrix $A^{2} . A^{2}[i, j]$ will be 1 only if there is a k such that $A[i, k]=1$ and $A[k, j]=1$, i.e., if there is a path from i to j of length 2 .
- Similarly, we can prove by induction that $A^{k}[i, j]=1$ only if there is a path from node i to node j of length k.
- Therefore, it follows that $A^{*}=I+A+A^{2}+\cdots+A^{n-1}$.
- Using the binomial theorem, we can show that $I+A+A^{2}+\cdots+A^{n-1}=(I+A)^{n-1}$.
- Let a be a real number and n be an integer. We can compute a^{n} using $n-1$ multiplications.
- In fact we can compute a^{n} using only $O(\log n)$ multiplications. Consider the case when $n=2^{q}$ for some integer q. Then we can repeatedly square elements starting from a to get the following sequence: $a, a^{2}, a^{4}, \ldots, a^{2^{q}}$. Clearly, the computation of $a^{2^{q}}$ takes only $O(q)=O(\log n)$ multiplications.
- Even when n is not an integral power of two we can compute a^{n} using $O(\log n)$ multiplications. Express n in binary form as: $n=\sum_{i=0}^{q} b_{i} 2^{i}$ where each b_{i} is a bit. Note that $q=O(\log n)$.

$$
a^{n}=a^{\sum_{i=0}^{q} b_{i} 2^{i}}=\Pi_{(0 \leq i \leq q) \text { and } b_{i}=1} a^{2^{i}} .
$$

- The above equation suggests the following algorithm: 1) Compute the sequence: $a, a^{2}, \ldots, a^{2^{q}}$ in $O(q)$ time; and 2) Multiply the appropriate powers of a from the above sequence. This takes $O(q)$ time as well.
The total run time is $O(q)=O \log n)$.

Parallel Algorithms

- The idea of parallel computing is to employ multiple processors to solve a problem.
- Let π be any problem for which the best known sequential algorithm takes S time. Let P be the number of processors used and let T be the parallel run time.

Fact: $T \geq \frac{S}{P}$.

Proof: by contradiction. Assume to the contrary that there is a parallel algorithm that takes $<\frac{S}{P}$ time.

We can sequentially simulate each step of the parallel algorithm in $\leq P$ steps. This means that we can sequentially simulate the entire parallel algorithm in a total of $\leq P T<S$ time! This is a contradiction to the fact that S is the best known sequential run time for solving π.

