

CSE 3500 Algorithms and Complexity – Fall 2016

Lecture 20: November 3, 2016

Tree Traversal and Graph Search

• Traversal and search refer to the systematic visiting of the nodes of a tree or a graph,

performing certain operations at each node.

• In the last lecture we showed that we can perform tree traversal in O(n) time, n being the

number of nodes in the tree.

• In this lecture we will focus on searching through a general graph.

• Let G(V,E) be a given undirected graph that we are interested in searching. There are

several ways of searching. Two popular methods are Breadth-First Search (BFS) and

Depth-First Search (DFS).

• Recall that G can be represented as adjacency lists or an adjacency matrix. Let V =

{1, 2, . . . , n}.

The adjacency lists representation of G is an array A[1 : n] of lists. A[i] is a list of all the

neighbors of the node i, 1 ≤ i ≤ n.

The adjacency matrix representation of G is a n×n matrix A such that A[i, j] = 1 if there

is an edge from the node i to node j in G; and A[i, j] = 0 otherwise.

• BFS starts from a node, say, u. The node u is visited first. Nodes that are at a distance

of 1 from u are visited next; Nodes that are at a distance of 2 from u are visited next; and

so on.

Depth First Search (DFS)

• In DFS we start from a node, say, u and visit a neibhor v of u that has not been visited

before; From v we visit a neighbor w of v that has not been visited before, and so on, until

we reach a node x such that all the neighbors of x have already been visited. When this

happens we backtrack to the node y that was visited before x and start the search from y,

etc. The search terminates when we backtrack to the start node u.

• A pseudocode for DFS follows. To begin with, each entry in the array visited[1 : n] is zero.

DFS(u)

1) visited[u] = 1;

2) for each w ∈ Adj(u) do

1

3) if !visited[w] then DFS(w);

Run Time Analysis: Note that, for any node u ∈ V , line 3 is executed du times where

du is the degree of u. Lines 1 and 2 are executed for every node u in V . Thus the run time

of this algorithm is O(|V |+
∑

u∈V du) = O(|V |+ |E|). This is a linear time algorithm.

The case of multiple components

• The input graph may not be connected. Recall that an undirected graph is said to be

connected if there is a path from every node to every other node in the graph.

• If the graph is not connected, then it has more than one connected components. A connected

component of a graph is a maximal subgraph of the graph that is connected.

• When the input graph has more than one connected components we can modify the algo-

rithm DFS to get the following algorithm DFST:

1) for i = 1 to n do

2) visited[i] = 0;

3) DFST(G(V,E))

4) for i = 1 to n do

5) if !visited[i] then DFS(i);

• Run Time: When DFS is called on any node i, all the nodes in the connected component

that i belongs to will be visited. Let the number of connected components in G be c. Let

the number of nodes and edges in connected component q be |Vq| and |Eq|, respectively,

for 1 ≤ q ≤ c. If the node i belongs to connected component q, then, the time spent by

DFS(i) will be O(|Vq|+ |Eq|).

Thus the total run time of the algorithm will be O
(∑c

q=1(|Vq|+ |Eq|)
)

= O(|V |+ |E|).

Hints on Problem 7 in Homework 2

• Note that the adjacency matrix A has information about paths of length 1 in the graph.

Specifically, A[i, j] = 1 iff there is an edge from the node i to node j.

• Now consider the matrix A2. A2[i, j] will be 1 only if there is a k such that A[i, k] = 1 and

A[k, j] = 1, i.e., if there is a path from i to j of length 2.

• Similarly, we can prove by induction that Ak[i, j] = 1 only if there is a path from node i

to node j of length k.

2

• Therefore, it follows that A∗ = I + A+ A2 + · · ·+ An−1.

• Using the binomial theorem, we can show that I + A+ A2 + · · ·+ An−1 = (I + A)n−1.

• Let a be a real number and n be an integer. We can compute an using n−1 multiplications.

• In fact we can compute an using only O(log n) multiplications. Consider the case when

n = 2q for some integer q. Then we can repeatedly square elements starting from a to

get the following sequence: a, a2, a4, . . . , a2
q
. Clearly, the computation of a2

q
takes only

O(q) = O(log n) multiplications.

• Even when n is not an integral power of two we can compute an using O(log n) multipli-

cations. Express n in binary form as: n =
∑q

i=0 bi2
i where each bi is a bit. Note that

q = O(log n).

an = a
∑q

i=0 bi2
i

= Π(0≤i≤q) and bi=1a
2i .

• The above equation suggests the following algorithm: 1) Compute the sequence: a, a2, . . . , a2
q

in O(q) time; and 2) Multiply the appropriate powers of a from the above sequence. This

takes O(q) time as well.

The total run time is O(q) = O log n).

Parallel Algorithms

• The idea of parallel computing is to employ multiple processors to solve a problem.

• Let π be any problem for which the best known sequential algorithm takes S time. Let P

be the number of processors used and let T be the parallel run time.

Fact: T ≥ S
P

.

Proof: by contradiction. Assume to the contrary that there is a parallel algorithm that

takes < S
P

time.

We can sequentially simulate each step of the parallel algorithm in ≤ P steps. This means

that we can sequentially simulate the entire parallel algorithm in a total of ≤ PT < S

time! This is a contradiction to the fact that S is the best known sequential run time for

solving π. �

3

