


















CSE 3500 Algorithms and Complexity – Fall 2016

Lecture 2: September 1, 2016

Asymptotic Functions

• Asymptotic functions O,Ω, and Θ were introduced in the last lecture. When we analyze

the run times of algorithms, it is desirable to express the run times using Θ.

• The run time of the minimum finding algorithm is Θ(n) and the run time of the

selection sort algorithm is Θ(n2).

• Consider the following matrix multiplication algorithm. (Input: two n× n matrices A

and B; Output: C = AB.)

for 1 ≤ i, j ≤ n do

C[i, j] = 0.0;

for i = 1 to n do

for j = 1 to n do

for k = 1 to n do

C[i, j] = C[i, j] + A[i, k] ∗B[k, j];

In the above algorithm we perform n multiplications and n − 1 additions for every

element in the output. There are n2 elements in the output. Therefore, the total run

time is n2(n+ n− 1) = 2n3 − n2 = Θ(n3).

• Claim: If f(n) is a non-negative integer function of n such that f(n) = akn
k +

ak−1n
k−1 + · · · + a2n

2 + a1n + a0, then f(n) = Θ(nk). Here ak, ak−1, . . . , a2, a1, a0 are

constants and k is a positive integer constant. (Prove this).

Algorithm Design

• Unfortunately, there are no standard recipes for designing optimal algorithms.

• There are some commonly used algorithm design techniques: divide-and-conquer,

greedy, dynamic programming, backtracking, etc.

• There is no guarantee that using a subset of these techniques will always yield optimal

algorithms.



• In any algorithm there is typically an idea that does not fall under any of these tech-

niques. This idea is very much dependent on the problem and the algorithm developer.

Randomized Algorithms

• For many algorithms (such as quicksort) the average run time is much better than the

worst case run time. Average run times are computed assuming a specific (typically

uniform) distribution on the input space. However, this assumption may not hold in

practice. Is it possible to develop algorithms whose run times will be as good as the

average run times but where no assumptions are made on the input space? The answer

is yes and such algorithms employ coin flips.

• A randomized algorithm is one where certain decisions are made based on outcomes

of coin flips made in the algorithm. The analysis of a randomized algorithm is done

without assuming anything about the input distribution. The analysis is done in the

space of all possible outcomes for coin flips made in the algorithm (rather than in the

space of all possible inputs).

• There are two kinds of randomized algorithms: Monte Carlo and Las Vegas.

• A Monte Carlo algorithm typically pertains to decision problems (i.e., problems for

which the answer is either “yes” or “no”). The output of a Monte Carlo algorithm is

correct with a very high probability.

• A Las Vegas algorithm always outputs the correct answer and its run time is a random

variable. Ideally, we would like to prove that the run time of a Las Vegas algorithm is

“small” with a very high probability. Such run time bounds proven are referred to as

“high probability bounds”.

• Randomized algorithms offer simplicity and better performance relative to their deter-

ministic counterparts. For a number of fundamental problems in computing (such as

sorting, selection, convex hull, etc.) the best known algorithms happen to be random-

ized. These algorithms have the best asymptotic run times and perform the best in

practice.

• By a high (or very high) probability we mean a probability of at least (1−n−α), where

n is the input size and α is a probability parameter (assumed to be a constant ≥ 1).

In the analysis we keep α as though it is a variable. By a low probability we mean a

probability of ≤ n−α. For instance, if n = 1, 000 and α = 100, then, n−α = 10−300.

Identification of the Repeated Element

• Consider the following problem. Input: X = k1, k2, . . . , kn. It is known that X has n
2

copies of one element and the other elements are distinct (i.e., they occur exactly once



each). Output: the repeated element.

• We can solve the above problem deterministically in a number of ways: 1) We can sort

the sequence X and scan through the sorted list. Copies of the repeated element will

be found in successive positions. The run time of this algorithm will be Θ(n log n) (if

we use merge sort, for example); 2) We can use a median finding algorithm to identify

the repeated element. There exist Θ(n) time algorithms for median finding; 3) There

is a relatively simple linear time (i.e., Θ(n) time) algorithm for finding the repeated

element: Partition X into groups of size 3 each and look for the repeated element in the

individual groups. By pigeon-hole principle, it follows that at least one of the groups

will have at least two copies of the repeated element. For each group we can check if

it has two or more copies of any element using 3 comparisons. Therefore, we spend a

total of n comparisons.

• We can argue that any deterministic algorithm for solving the above problem needs
n
2

+ 2 time as follows: Consider an adversary who has perfect knowledge about the

algorithm to be used and who is picking the input. Specifically, the adversary knows

the order in which the sequence elements are accessed by the algorithm. In this case

the adversary can make sure that the first n
2

+ 1 elements accessed by the algorithm

are distinct, forcing the algorithm to access at least one more element.

• We can develop a Las Vegas algorithm that takes only O(log n) time with a high prob-

ability.

repeat

Flip an n-sided coin to get i;

Flip an n-sided coin to get j;

if i = j and ki = kj then output ki and quit;

forever

• Claim: The run time of the above algorithm is Õ(log n).


