

CSE 3500 Algorithms and Complexity – Fall 2016

Lecture 19: November 1, 2016

Dynamic Programming Continued: Single Source Shortest

Paths (SSSP) Problem - General Weights

• Recall that Dijkstra’s algorithm for the SSSP problem assumes that there are no negative

edges in the graph. When there are negative edges we can employ dynamic programming.

1. For any node u ∈ V − {s}, define distl[u] to be the weight of the shortest s to u path

from among all the s to u paths that have no more than l edges. Here s is the source

node.

Note that the input for this problem is dist1[u] for each u ∈ V −{s}. We are interested

in computing distn−1[u] for every u ∈ V − {s}.

2. A recurrence relation for distl[u] can be derived as follows. If we consider any s to u

path that has at most l edges, there are two possibilities: either this path has ≤ (l−1)

edges or it has l edges. If there are ≤ (l − 1) edges, then the shortest such path has

a weight of distl−1[u]. If this path has l edges, then the weight of the shortest such

path is minw:(w,u)∈E distl−1[w] + cost(w, u) (where cost(w, u) is the weight of the edge

(w, u)). Put together we arrive at:

distl[u] = min

[
distl−1[u], min

w:(w,u)∈E
distl−1[w] + cost(w, u)

]
(1)

3. We can use equation 1 to compute distn−1[u] starting from dist1[u] for u ∈ V − {s}.
The idea is to compute dist2[u], dist3[u], . . . , distn−1[u]. A pseudocode is given below.

1) for u ∈ V − {s} do dist[u] = cost(s, u);

2) for l = 2 to n− 1 do

3) for u ∈ V − {s} do
4) for each w such that (w, u) ∈ E do

5) dist[u] = min{dist[u], dist[w] + cost(w, u)};

Run Time Analysis: Step 1 takes O(|V |) time. Step 5 takes O(1) time. If du is

the in-degree of the node u, then the for loop of line 4 takes O(du) time. As a result,

the for loop of line 3 takes O(
∑

u∈V−{s} du) = O(|E|) time. The for loop of line 2 is

iterated |V | − 2 times. Thus the run time of the for loop of line 2 is O(|V | |E|).
In summary, the total run time of the algorithm is O(|V | |E|). This algorithm is

known as the Bellman-Ford algorithm.

1

String Editing Problem (SEP)

• Input for this problem are two strings X = x1x2 · · ·xn and Y = y1y2 · · · ym from some

alphabet Σ. The goal is to convert X into Y using a sequence of three operations: Insert,

Delete, and Exchange. Each operation has an associated cost. The output should be

a sequence (known as an edit sequence) of these operations that will convert X into Y

such that the total cost of all the operations in the sequence is as small as possible. This

minimum cost can be thought of as a distance between X and Y .

• This problem has numerous applications. For example, in the bioinformatics domain, X

and Y could be either DNA sequences or protein sequences. The distance between X and

Y as defined above can be used to determine how similar X and Y are.

• An Example: Consider the following strings from the alphabet Σ = {a, b}: X =

abbbabaaba and Y = abbbbab. Assume that each operation has a unit cost.

One sequence of operations that converts X into Y is: Delete x1, Delete x2, . . . , Delete

x10, Insert y1, Insert y2, . . . , Insert y6, and Insert y7. The total cost is 17.

Another possible edit sequence is: Delete x5, Delete x7, and Delete x10. The total cost here

is only 3!

A Dynamic Programming Solution for SEP

1. Define cost(i, j) to be the minimum cost of any edit sequence that converts x1x2 · · ·xi into

y1y2 · · · yj, for any i = 0, 1, 2, . . . , n and j = 0, 1, 2, . . . ,m. Note that we are only interested

in the value of this function for i = n and j = m.

We can enumerate some base cases as follows: cost(0, 0) = 0. cost(i, 0) = cost(i − 1, 0) +

D(xi), for any 1 ≤ i ≤ n, where D(xi) is the cost for deleting xi. Also, cost(0, j) =

cost(0, j − 1) + I(yj), for any 1 ≤ j ≤ m, where I(yj) is the cost for inserting yj.

2. A recurrence relation for cost(i, j) can be obtained by looking at the last operation per-

formed to convert X into Y . The last operation has to be Insert, Delete, or Exchange.

If the last operation is Insert, it means that we are converting x1x2 · · ·xi into y1y2 · · · yj−1
and inserting yj at the end. The minimum cost of any such edit sequence will be cost(i, j−
1) + I(yj).

If the last operation is Delete, it means that we are converting x1x2 · · ·xi−1 into y1y2 · · · yj
and finally deleting xi. The minimum cost of any such edit sequence will be cost(i−1, j) +

D(xi).

Finally, if the last operation is Exchange, we are converting x1x2 · · ·xi−1 into y1y2 . . . yj−1,

and exchanging xi with yj. The minimum cost of any such edit sequence will be cost(i −
1, j − 1) + E(xi, yj), where E(xi, yj) is the cost associated with exchanging xi with yj.

2

Putting these observations together, we get:

cost(i, j) = min{cost(i, j−1)+I(yj), cost(i−1, j)+D(xi), cost(i−1, j−1)+E(xi, yj)} (2)

3. Starting from the base cases we can enumerate cost(i, j) in as many points as needed before

we can compute cost(n,m). Think of a matrix M [0 : n, 0 : m] such that M [i, j] = cost(i, j),

for 0 ≤ i ≤ n and 0 ≤ j ≤ m.

We can compute the entries of M in a row major order. Note that row 0 and column 0 of

M correspond to base cases. M [i, j] depends on M [i− 1, j], M [i, j − 1] and M [i− 1, j − 1]

(for any 1 ≤ i ≤ n and 1 ≤ j ≤ m). If we proceed with the computations in a row major

order, when we are ready to compute M [i, j], the three values of M that M [i, j] depends

on would already have been computed. As a result, each entry M [i, j] can be computed in

O(1) time.

Therefore, it follows that the run time of the algorithm is O(mn).

Tree Traversal and Graph Search

• Tree traveral refers to visiting the nodes of a tree systematically and possibly performing

some operations at each node. Similary, graph search refers to visiting the nodes of an

arbitrary graph. Traversals and search are basic tasks performed on trees and graphs,

respectively, with many applications.

• There are several ways to traverse a tree. Three popular schemes are in-order, pre-order,

and post-order traversals.

• For instance in in-order traversal, we start from the root, recursively traverse the left

subtree, visit the root (i.e., perform the required operations at the root), and recursively

traverse the right subtree.

• Pseudocodes for the three traversals follow. In these algorithms, if t is a node, then,

t → lchild and t → rchild refer to the left child and the right child of the node t, respec-

tively.

In-Order(t)

In-Order(t→ lchild);

Visit(t);

In-Order(t→ rchild);

Pre-Order(t)

Visit(t);

Pre-Order(t→ lchild);

3

Pre-Order(t→ rchild);

Post-Order(t)

Post-Order(t→ lchild);

Post-Order(t→ rchild);

Visit(t);

• All of the above algorithms take O(n) time each, where n is the number of nodes in the

tree. This can be seen as follows. Each node is looked at at most three times: Once when

the algorithm is called on this node, once when the recursive call returns from the left child,

and once when the recursive call returns from the right child. Thus the time spent on each

node is O(1) and the claim follows.

4

