

CSE 3500 Algorithms and Complexity – Fall 2016

Lecture 18: October 27, 2016

Dynamic Programming

• Steps involved in a typical dynamic programming algorithm are:

1. Identify a function such that the solution we are looking for is the value of this function

at a specific point;

2. Write a recurrence relation for this function; and

3. Start from the base case values of the function. Use the recurrence relation to evaluate

the function at as many points as needed before the point of interest is reached.

0/1 Knapsack Problem

• Input for this problem are n objects. Object i has a profit of pi and a weight of wi, for

1 ≤ i ≤ n. We are also given a knapsack of capacity m. The problem is to compute

x1, x2, . . . , xn such that each xi is either zero or one (for 1 ≤ i ≤ n),
∑n

i=1wixi ≤ m, and∑n
i=1 pixi is maximum.

• Define Knap(i, j, y) to be a subproblem (of the 0/1 knapsack problem) as follows: Given

objects i, i+1, . . . , j and a knapsack of capacity y, computer the maximum profit obtainable.

We note that the 0/1 knapsack problem is nothing but Knap(1, n,m).

• Here is a dynamic programming solution for Knap(i, j, y):

1. Define fi(y) to be the solution to Knap(1, i, y).

2. In an optimal solution to Knap(1, i, y) there are two possibilities: Object i is in the

knapsack or the object i is not in the knapsack. If object i is not in the knapsack,

then the optimal profit obtainable is fi(y) = fi−1(y). If object i is in the knapsack,

then the maximum profit achievable is fi(y) = fi−1(y−wi) + pi. Put together we get:

fi(y) = max{fi−1(y), fi−1(y − wi) + pi}. (1)

3. Now consider the case that the object weights are integers. We can use Equation 1 to

compute fn(m) as follows. We have the following base cases: f0(y) = 0 for all y ≥ 0

and fi(y) = −∞ for all y < 0 and all i. Let M be a (n + 1) × (m + 1) matrix such

that Mi,j = fi(j) for 0 ≤ i ≤ n and 0 ≤ j ≤ m. Compute this matrix in a row major

order. Row 0 and column 0 of this matrix have all zeros.

1

Note that Mi,j depends on two entries in row (i − 1). If we proceed in a row major

order, these two entries will be available when we are ready to compute Mi,j and hence

Mi,j can be computed in O(1) time (for each entry Mi,j).

Thus the entire algorithm takes a total of O(mn) time.

An Example

• Consider the following instance of the 0/1 knapsack problem: There are three objects whose

profits are 4, 5, and 12, and whose weights are 2, 3, and 4, respectively. The knapsack

capacity is 5.

We start with i = 1 in Equation 1: f1(1) = max{f0(1), f0(1− 2) + 4} = max{0,−∞} = 0.

f1(2) = max{f0(2), f0(2− 2) + 4} = max{0, 4} = 4. Likewise, f1(3) = f1(4) = f1(5) = 4.

f2(0) = 0. f2(1) = max{f1(1), f1(1−3)+5} = max{0,−∞} = 0. f2(2) = max{f1(2), f1(2−
3) + 5} = 4. f2(3) = max{f1(3), f1(3−3) + 5} = max{4, 5} = 5. f2(4) = max{f1(4), f1(4−
3) + 5} = max{4, 5} = 5. f2(5) = max{f1(5), f1(5− 3) + 5} = max{4, 4 + 5} = 9.

f3(0) = 0. f3(1) = max{f2(1), f2(1−4)+12} = max{0,−∞} = 0. f3(2) = max{f2(2), f2(2−
4) + 12} = max{4,−∞} = 4. f3(3) = max{f2(3), f2(3 − 4) + 12} = max{5,−∞} = 5.

f3(4) = max{f2(4), f2(4− 4) + 12} = max{5, 12} = 12. Likewise we realize that f3(5) = 12

and the final answer is 12.

All Pairs Shortest Paths (APSP) Problem

• Input for the APSP problem is a weighted directed graph G(V,E). The problem is to find

the shortest path between every pair of nodes in the graph.

• In the context of path problems in graphs, we typically assume that there are no negative

cycles in the graph.

• If there are no negative edges in G, we can use Dijkstra’s algorithm to solve the APSP

problem. The idea is to invoke Dijkstra’s algorithm multiple times, once for each node in

the graph as the source. In this case, the run time will be O(|V |(|V |+ |E|) log |V |).

• We can employ dynamic programming to solve the APSP problem (even when the graph

has negative edges) as follows. Let V = {1, 2, 3, . . . , n}.

1. For any two nodes i and j in V , define Ak(i, j) to be the weight of the shortest i to

j path from among all the i to j paths for which the intermediate nodes come from

{1, 2, 3, . . . , k}. Input for the APSP problem is A0(i, j) for i, j ∈ V . We want to

compute An(i, j), for i, j ∈ V .

2

2. To derive a recurrence relation for Ak(i, j) note that the shortest i to j path whose

intermediate nodes come from {1, 2, 3, . . . , k} either does not have k as an intermediate

node or it has k as an intermediate node. If k is not an intermediate node, then,

Ak(i, j) = Ak−1(i, j). If k is an intermediate node, then Ak(i, j) = Ak−1(i, k) +

Ak−1(k, j). Put together, we get:

Ak(i, j) = min{Ak−1(i, j), Ak−1(i, k) + Ak−1(k, j)}. (2)

3. We can use Equation 2 to compute An(i, j) starting from A0(i, j). A pseudocode

follows.

for i = 1 to n do

for j − 1 to n do

A[i, j] = cost(i, j);

for k = 1 to n do

for i = 1 to n do

for j = 1 to n do

A[i, j] = min{A[i, j], A[i, k] + A[k, j]};

• Clearly, the run time of the above algorithm is O(n3).

• If there are no negative edges in the graph, Dijkstra’s algorithm can be used to solve the

APSP problem in O(n(m + n) log n) time where m = |E|. Dijkstra’s algorithm will be

faster than the dynamic programming algorithm when m < n2

logn
. Otherwise, the dynamic

programming algorithm will be faster.

• In 2014, V. Williams has shown that the APSP problem can be solved in O
(

n3

2Ω(
√

log n)

)
time.

3

