

CSE 3500 Algorithms and Complexity – Fall 2016

Lecture 17: October 25, 2016

Dijkstra’s Algorithm

• Dijkstra’s algorithm for the SSSP problem generates the shortest paths in nondecreasing

order of the shortest path weights. I.e., the shortest path whose path weight is the least

(from across all the shortest paths) is generated first; the shortest path whose path weight

is the next smallest is generated next; and so on.

• The algorithm at any given time keeps a set S ⊆ V of nodes such that for the nodes in

S we have already computed the weights of the shortest paths from the source node. To

begin with S = {s}.

• The algorithm has n− 1 phases (n = |V |) where in each phase a new node enters S. When

S = V , the algorithm terminates.

• The nodes that are not in S will be stored in a 2-3 tree Q.

• For any node u 6∈ S we define a function dist[u]. We define dist[u] to be the weight of the

shortest path from among all the s to u paths all of whose intermediate nodes come from

S.

• When a node u 6∈ S is inserted into Q, its key value will be dist[u].

• We claim that the next node u that should enter S is the node from Q whose dist value is

the least (from among all the nodes in Q). This can be proven by contradiction. Assume to

the contrary that the next node u that enters S has an intermediate node from V −S. Let

this node be w. We can express the shortest path weight from s to u as pathweight(s, w)+

pathweight(w, u) (where pathweight(a, b) stands for the weight of the shortest path from

the node a to the node b). Since there are no negative edges, it follows that pathweight(w, u)

is nonnegative. This in turn means that pathweight(s, w) ≤ pathweight(s, u). This is a

contradiction since in this case we should generate the shortest path to w before generating

the shortest path to u.

A pseudocode

• Input is a directed weighted graph G(V,E) and a source node s ∈ V . The output are the

shortest paths from s to every other node. Let |V | = n and |E| = m. A pseudocode for

the Dijkstra’s algorithm follows.

1

1) S = {s};
2) for each u ∈ V − {s} do
3) dist[u] = cost(s, u);

4) Insert u into a 2-3 tree Q with dist[u] as the key;

5) for i = 1 to n− 1 do

6) Identify the node u from Q with the least key;

7) S = S ∪ {u}; Delete u from Q;

8) for each w ∈ Adj(u) do

9) if dist[u] + cost(u,w) < dist[w] then dist[w] = dist[u] + cost(u,w);

• Run time analysis: Steps 1 through 4 take a total of O(n log n) time. Step 9 takes

O(log n) time since it involves changing the key value of a node in Q. This can be done by

deleting the node first and then reinserting the node with a new key value.

The for loop of step 8 takes a total of O(du log n) time (for each iteration of the for loop

of step 5) where du is the out-degree of the node u. When summed over all the iterations

of the for loop of step 5, step 8 takes a total of O(
∑

u∈V du log n) = O(m log n) time.

Steps 6 and 7 take a total of O(n log n) time summing over all the iterations of the for

loop of step 5.

In summary, the total run time of Dijkstra’s algorithm is O((m + n) log n).

An Example

• Consider the following graph: G(V,E) with V = {s, 1, 2, 3, 4, 5} and cost(s, 1) = 15, cost(s, 3) =

2, cost(s, 4) = 10, cost(1, 2) = 5, cost(2, 4) = 1, cost(3, 4) = 1, cost(3, 2) = 3, cost(3, 1) =

3, cost(5, 2) = 5, and cost(5, 4) = 2.

• At the beginning we have: S = {s}; dist[1] = 15, dist[2] =∞, dist[3] = 2, dist[4] = 10, and

dist[5] =∞.

• When i = 1: Node 3 has the least dist value and hence it enters S next. The current value

of dist[1] is 15 which is larger than dist[3] + cost(3, 1) = 5 and hence dist[1] changes to 5.

Likewise, dist[2] changes to 5 and dist[4] changes to 3. dist[5] continues to be ∞.

• When i = 2: Node 4 enters S. The dist values of the nodes 1, 2, and 5 do not change.

• When i = 3: The nodes 1 and 2 have the same least dist value of 5. We can break the

tie arbitrarily. Let the node 1 enter S next. The dist values of the nodes 2 and 5 do not

change.

• When i = 4: The node 2 enters S next. The dist value of the node 5 does not change.

2

• When i = 5: The node 5 enters S next.

• In summary, the shortest path weights for the nodes 1, 2, 3, 4, and 5 are 5, 5, 2, 3, and ∞,

respectively.

Note: Dijsktra’s algorithm might give an incorrect answer when the input graph has negative

edges.

• Consider the following graph: G(V,E) where V = {s, 1, 2} and cost(s, 1) = 10, cost(s, 2) =

5, and cost(1, 2) = −8.

• Let’s employ Dijkstra’s algorithm on this graph.

• At the beginning we have: S = {s}; dist[1] = 10, and dist[2] = 5.

• When i = 1: The node 2 has the least dist value and hence it will enter S next. This means

that the algorithm will output 5 as the weight of the shortest path from s to 2, which is

incorrect! There is a shorter path from the node s to 2 with a weight of 2.

Dynamic Programming

• There are problems for which greedy algorithms may not yield acceptable solutions. For

example, there are problems for which multiple decision sequences might have to be in-

vestigated to arrive at an optimal solution. For such problems we can attempt to use the

dynamic programming approach.

• There are three steps involved in any dynamic programming algorithm:

1. Identify a function such that the solution we are looking for is the value of this function

at a specific point;

2. Write a recurrence relation for this function; and

3. Start from the base case values of the function. Use the recurrence relation to evaluate

the function at as many points as needed before the point of interest is reached.

• We will illustrate the dynamic programming approach using several examples. The first

example to be investigated is the 0/1 knapsack problem.

• 0/1 knapsack: Input are n objects. Object i has a profit of pi and a weight of wi, for

1 ≤ i ≤ n. We are also given a knapsack of capacity m. The problem is to compute

x1, x2, . . . , xn such that each xi is either zero or one (for 1 ≤ i ≤ n),
∑n

i=1wixi ≤ m, and∑n
i=1 pixi is maximum.

3

