










CSE 3500 Algorithms and Complexity – Fall 2016

Lecture 16: October 20, 2016

Greedy Algorithms Continued

The first part of this lecture was spent on solving Exam 1 problems. In the second part we

continued our discussion on greedy algorithms. Specifically, we talked about the fractional (or

real) knapsack problem.

Real knapsack problem (RKP)

• Input for this problem are n objects where each object has a profit and weight. pi and wi are

the profit and the weight of object i, for 1 ≤ i ≤ n. We are given a knapsack of capacity m.

The problem is to determine what fraction of each object should be stored in the knapsack

such that the capacity of the knapsack is not exceeded and the profit obtained is maximum.

More specifically, we want to deterime x1, x2, . . . , xn such that
∑n

i=1wixi ≤ m,
∑n

i=1 pixi

is maximum, and 0 ≤ xi ≤ 1 for all i, 1 ≤ i ≤ n.

• We can employ the greedy approach to solve this problem. There are many ways in which

we can order the objects and as a consequence many different selection criteria are possible.

We’ll investigate some possible criteria using an example.

• Consider an instance of the RKP with three objects whose profits are 5, 20, 30 and whose

weights are 5, 10, and 30, respectively. The knapsack capacity is 12.

• Selection Criterion 1: As per this criterion, the objects are examined in non-decreasing

order of the weights. Under this criterion, the first object examined will be 1 whose capacity

is 5. We include this object into the knapsack in full and set x1 = 1.0. We then examine

object 2. The knapsack has only a capacity of 7 left and hence we decide to include 7
10

fraction of the second object into the knapsack and set x2 = 7
10

. Since the knapsack is full

now, we set x3 = 0.0. The resultant profit is 1.0× 5 + 7
10
× 20 + 0.0× 30 = 19.

• Selection Criterion 2: This criteion orders the objects in nonincreasing order of the

profits. Object 3 is examined first and we set x3 = 12
30

. Since the knapsack is full with this

decision, we set x1 = x2 = 0.0. The resultant profit is 0.0× 5 + 0.0× 20 + 12
30

30 = 12.

• Selection Criterion 3: Here we order the objects based on the profit to weight ratios

(called profit densities) in nonincreasing order. Based on this criterion, the first object to

be examined wil be 2 and we set x2 = 1.0. A capacity of 2 is left. Objects 1 and 3 have

the same profit density of 1 and hence we can either choose object 1 or object 3 next. If

we go with object 1, we can set x1 = 2
5

and x3 = 0.0. The net profit for this solution is
2
5
× 5 + 1.0× 20 + 0.0× 30 = 22.

1



• Theorem: The greedy algorithm for RKP will always output the optimal solution under

Selection Criterion 3.

Proof sketch: Assume that the objects have been ordered based on the profit densities

in nonincreasing order. Specifically, object 1 has the largest profit density, object 2 has

the next largest profit density, etc. Let y1, y2, . . . , yn be any optimal solution and let

x1, x2, . . . , xn be the greedy solution.

Note that the greedy solution will be such that x1 = 1, x2 = 1, · · · , xj−1 = 1, xj < 1, xj+1 =

xj+2 = · · · = xn = 0.0, for some j ≤ n. If the optimal and greedy solutions are identical,

then the greedy solution is also optimal. If not, let k be the least index such that xk 6= yk.

For this value of k, we can show that xk > yk.

Change the value of yk to match xk. This is done by decreasing the values of yk+1, yk+2, . . . , yn
as needed. If z1, z2, . . . , zn is the resultant new solution, then we will have: zk = xk and

wk(zk − yk) =
∑n

i=k+1(yi − zi)wi.

We show that the profit for the new solution z1, z2, . . . , zn is no less than that of the old

solution y1, y2, . . . , yn. We then look for the next least index k′ (greater than k) for which

zk′ 6= xk′ and continue the process of matching zk′ with xk′ and prove that the resultant

solution has a profit that is no less than that of the solution z1, z2, . . . , zn.

Proceeding in this manner, ultimately, we will end up with a new solution where each value

of the greedy solution has been matched. Even for this solution we will able to prove that

the profit is no less than that of y1, y2, . . . , yn implying that the greedy solution is also

optimal. �

Single source shortest paths (SSSP) problem

• Input: A weighted directed graph G(V,E) and a node s ∈ V called the source. Output:

the shortest paths from s to every other node in G.

• In any path finding problem in graphs, we typically assume that there are no negative cycles

(i.e., cycles whose total weights are negative) since otherwise the notion of the shortest path

may not be well defined.

• Dijkstra’s algorithm for the SSSP problem is greedy and it assumes that there are no

negative edges in the graph.

• The algorithm generates the shortest paths in nondecreasing order of the shortest path

weights. I.e., the shortest path whose path weight is the least (from across all the short-

est paths) is generated first; the shortest path whose path weight is the next smallest is

generated next; and so on.

2



• Dijkstra’s algorithm is similar to Prim’s algorithm for the MST problem. Similar to the

near data structure for the MST problem, Dijkstra’s algorithm defines a data structure

called dist.

• More details of the algorithm will be given in the next lecture.

3


