

CSE 3500 Algorithms and Complexity – Fall 2016

Lecture 15: October 18, 2016

Greedy Algorithms

• There are numerous problems for which simple greedy approaches could help in obtaining

optimal solutions.

• Consider the following class of problems: Let I be a set of objects. We are interested in

finding a subset S of I such that S satisfies a set of constraints and optimizes a given

objective function.

• Any subset of I that satisfies the given constraints is called a feasible solution. Any feasible

solution that optimizes the objective function is called an optimal solution.

• We would ideally like to get an optimal solution.

• The minimum spanning tree problem belongs to the above class of problems.

Minimum Spanning Tree (MST) Problem

• The MST problem can defined as follows. Input: A weighted directed graph G(V,E);

Output: A spanning tree of G that has the least total edge weight.

• A spanning tree of G is nothing but a subset of the edges of G that will induce a tree on

V .

• Note that a spanning tree will have |V | − 1 edges.

• Thus the MST problem can be thought of as that of choosing a subset T of E such that T

will induce a tree on V and the sum of weights of all the edges in T is as small as possible.

A General Greedy Algorithm

• Let I be the input set of objects. A generic greedy algorithm starts with an empty set S

as the solution. It examines each object O of I at a time and makes a decision on whether

to include O into S or not. When it finishes examining all the objects of I, it outputs the

resultant solution.

• The order in which the objects are examined could make a difference in the quality of the

output. A selection criterion is used to determine this order.

1

• A pseudocode for a generic greedy algorithm is given below.

Solution = ∅;
for i = 1 to n do

Select the next object O from I using

a relevant selection criterion; I = I − {O};
if Solution ∪ {O} is feasible then Solution = Solution ∪ {O};

Output Solution;

• Note that in a greedy algorithm once we make a decision with respect to an object we will

never re-examine this decision.

Prim’s Algorithm

• In the last lecture we discussed the Kruskal’s algorithm. In this lecture we will explore the

Prim’s algorithm in detail.

• Prim’s algorithm always keeps a tree T that is a subtree of a MST of G. To begin with

T will have only one edge, namely, the edge of G with the least weight. Ties are broken

arbitrarily.

• The algorithm starts with a tree T with one edge and this tree is grown one edge at a time.

When the tree has |V | − 1 edges, the resultant tree is output.

• An important question here is which edge of G should be added next to T?

• Since we are interested in minimizing the sum of the weights of all the edges in T , a relevant

greedy approach for selecting the next edge for T will be to choose the edge whose weight

is the least from among all those edges that have one end point in T and the other end

point outside T .

• To identify the edge that should enter T next, we define a data structure called near. For

any node u outside T , we define near[u] to be that node v of T such that cost(v, u) is the

least (across all the nodes u in T). Here cost(i, j) refers to the weight of the edge (i, j) for

any (i, j) ∈ E.

• To begin with we identify the edge of G with the least weight and T has only this edge at

the beginning. Let (a, b) be this edge. For every node u other than a and b we compute

near[u] and insert u into a 2-3 tree Q with a key value of cost(u, near[u]).

• From thereon, we identify the node u from Q with the least key value. This nodes enters

the tree T next. When we insert a new node into T , the near values of some of the nodes

might change. Luckily the only nodes whose near values might change will be those that are

2

adjacent to u (the node that has just now been inserted into T) in G. We modify the near

values of the nodes as needed. Followed by this we repeat the process of identifying the next

node that should enter T next, and so on. Let n = |V | and m = |E|. A pseudocode follows.

1) Identify the edge of G with the least weight. Let (a, b) be this edge;

2) T = {(a, b)};
3) for every u ∈ V − {a, b} do

4) if cost(u, a) < cost(u, b) then near[u] = a else near[u] = b;

5) Insert u into a 2-3 tree Q with cost(u, near[u]) as its key;

6) for i = 1 to n− 2 do

7) Identify the node u in Q with the least key;

8) T = T ∪ {(u, near[u])}; Delete u from Q;

9) for every w ∈ Adj(u) do

10) if cost(w, u) < cost(w, near[w]) then near[w] = u;

• Run Time Analysis: Step 1 takes O(m) time. Step 2 takes O(1) time if we keep T as a

list of edges. Step 4 takes O(1) time. In step 5, we perform an insert operation into a 2-3

tree. Each insert takes O(log n) time. Thus step 3 takes a total of O(n log n) time.

In step 10, the key value of a node w in Q changes. One way of making this change will be

to delete w from Q and insert it back into Q with the new key value. Thus step 10 takes

O(log n) time. If the degree of the node u is du, then step 9 takes a total of O(du log n)

time. Step 7 takes a total of O(n log n) time (over all values of i in the for loop of line 6).

Step 8 takes a total of O(n log n) time (over all values of i in the for loop of line 6).

The total time step 9 takes (over all values of i in the for loop of line 6) is

O
(
n log n +

∑
u∈V−{a,b} du log n

)
= O

(
n log n +

∑
u∈V du log n

)
= O(n log n + m log n),

since
∑

u∈V du = 2m for any undirected graph.

In summary, the total run time of the algorithm is O((m + n) log n).

3

