












CSE 3500 Algorithms and Complexity – Fall 2016

Lecture 15: October 18, 2016

Greedy Algorithms

• There are numerous problems for which simple greedy approaches could help in obtaining

optimal solutions.

• Consider the following class of problems: Let I be a set of objects. We are interested in

finding a subset S of I such that S satisfies a set of constraints and optimizes a given

objective function.

• Any subset of I that satisfies the given constraints is called a feasible solution. Any feasible

solution that optimizes the objective function is called an optimal solution.

• We would ideally like to get an optimal solution.

• The minimum spanning tree problem belongs to the above class of problems.

Minimum Spanning Tree (MST) Problem

• The MST problem can defined as follows. Input: A weighted directed graph G(V,E);

Output: A spanning tree of G that has the least total edge weight.

• A spanning tree of G is nothing but a subset of the edges of G that will induce a tree on

V .

• Note that a spanning tree will have |V | − 1 edges.

• Thus the MST problem can be thought of as that of choosing a subset T of E such that T

will induce a tree on V and the sum of weights of all the edges in T is as small as possible.

A General Greedy Algorithm

• Let I be the input set of objects. A generic greedy algorithm starts with an empty set S

as the solution. It examines each object O of I at a time and makes a decision on whether

to include O into S or not. When it finishes examining all the objects of I, it outputs the

resultant solution.

• The order in which the objects are examined could make a difference in the quality of the

output. A selection criterion is used to determine this order.
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• A pseudocode for a generic greedy algorithm is given below.

Solution = ∅;
for i = 1 to n do

Select the next object O from I using

a relevant selection criterion; I = I − {O};
if Solution ∪ {O} is feasible then Solution = Solution ∪ {O};

Output Solution;

• Note that in a greedy algorithm once we make a decision with respect to an object we will

never re-examine this decision.

Prim’s Algorithm

• In the last lecture we discussed the Kruskal’s algorithm. In this lecture we will explore the

Prim’s algorithm in detail.

• Prim’s algorithm always keeps a tree T that is a subtree of a MST of G. To begin with

T will have only one edge, namely, the edge of G with the least weight. Ties are broken

arbitrarily.

• The algorithm starts with a tree T with one edge and this tree is grown one edge at a time.

When the tree has |V | − 1 edges, the resultant tree is output.

• An important question here is which edge of G should be added next to T?

• Since we are interested in minimizing the sum of the weights of all the edges in T , a relevant

greedy approach for selecting the next edge for T will be to choose the edge whose weight

is the least from among all those edges that have one end point in T and the other end

point outside T .

• To identify the edge that should enter T next, we define a data structure called near. For

any node u outside T , we define near[u] to be that node v of T such that cost(v, u) is the

least (across all the nodes u in T ). Here cost(i, j) refers to the weight of the edge (i, j) for

any (i, j) ∈ E.

• To begin with we identify the edge of G with the least weight and T has only this edge at

the beginning. Let (a, b) be this edge. For every node u other than a and b we compute

near[u] and insert u into a 2-3 tree Q with a key value of cost(u, near[u]).

• From thereon, we identify the node u from Q with the least key value. This nodes enters

the tree T next. When we insert a new node into T , the near values of some of the nodes

might change. Luckily the only nodes whose near values might change will be those that are
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adjacent to u (the node that has just now been inserted into T ) in G. We modify the near

values of the nodes as needed. Followed by this we repeat the process of identifying the next

node that should enter T next, and so on. Let n = |V | and m = |E|. A pseudocode follows.

1) Identify the edge of G with the least weight. Let (a, b) be this edge;

2) T = {(a, b)};
3) for every u ∈ V − {a, b} do

4) if cost(u, a) < cost(u, b) then near[u] = a else near[u] = b;

5) Insert u into a 2-3 tree Q with cost(u, near[u]) as its key;

6) for i = 1 to n− 2 do

7) Identify the node u in Q with the least key;

8) T = T ∪ {(u, near[u])}; Delete u from Q;

9) for every w ∈ Adj(u) do

10) if cost(w, u) < cost(w, near[w]) then near[w] = u;

• Run Time Analysis: Step 1 takes O(m) time. Step 2 takes O(1) time if we keep T as a

list of edges. Step 4 takes O(1) time. In step 5, we perform an insert operation into a 2-3

tree. Each insert takes O(log n) time. Thus step 3 takes a total of O(n log n) time.

In step 10, the key value of a node w in Q changes. One way of making this change will be

to delete w from Q and insert it back into Q with the new key value. Thus step 10 takes

O(log n) time. If the degree of the node u is du, then step 9 takes a total of O(du log n)

time. Step 7 takes a total of O(n log n) time (over all values of i in the for loop of line 6).

Step 8 takes a total of O(n log n) time (over all values of i in the for loop of line 6).

The total time step 9 takes (over all values of i in the for loop of line 6) is

O
(
n log n +

∑
u∈V−{a,b} du log n

)
= O

(
n log n +

∑
u∈V du log n

)
= O(n log n + m log n),

since
∑

u∈V du = 2m for any undirected graph.

In summary, the total run time of the algorithm is O((m + n) log n).
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