(52 258 f @u(u(SELEC
C§ //
JM S X, Pk kX
W:73-93 /
Low: 2
m'; m |
i '<
[0.18 < X

&A\V‘Ef@)\ﬁe Ron Thue

= Ob).

Bl 2 FCO\/D/ PRATT

RAVEST TARGAN 1933

Plcf< the PlWoT p\
Wﬁt’ﬂ the PLLoWING
KA‘C&OK[’NM g\/-/\m

Fon Quick Silecy.

/ Y= bl 0

prE Wy X X
A X X
- —~M N 3
| &7k! 7)\(_,!\) 50 0 75/)S/{\ 'X\
! X X X e 5\,
X X e
Chan G i

G\Rs0p XMMS“#

S’b& S5 G{'}CH/ Fr/\lbft\e
Wepvdn OF EAcy AR

r@i@wfs‘\\fyﬂ FOD e
Mepiad M of thesg

(\MMN\S. (20 M as M
Pt Quick sl

[:f.:\) 7[\9 \Q AAQ \ —(—Z N
o wAs d\/ X
hat Mo \'\' M

al <

= 4 B
q&ae); P %;Q{g?m
QWSCQGC\‘
5

| g o cagl dv
Qi) <cn L, Somg GVTANT C. L, Tty &

P@GGF By /Nchmsv\) Rhg <ol 55 OACh+AN
INDUCTON <Tef ASW the «e\ij for < ON 3 O ICV\P An
K.QQW\P'\JS G]Q S ka)'fb (V\—() e (f M&Qv\ 9(/)@

T@‘Q_A(g)‘("f (//3 Y\) +°(V\
S D 2, (g b H/Pabresig) / > 16§ lodtn = Oy

)
| = T() € 09¢n + d 1y | Treoeend Solochan on ;’Hﬁpi& Rt sy

RHS @ bc 096 el N zQCW\Q/MLS Can he | @ Pk A RMSOM SWMPLE S Fran X

= A 1) fhese & 2
9%' ‘ %ﬁa R ;LMCP@ brackf
/@Tﬁ\)gloo?m:()@. e U Swakeg Sowont & X

e zfiéx:)(,sﬁg/ ”*" gunlle st W 4}
i e 7{

5 SMALL, With 4 et o fppiate
/6\@[“ #W}”L‘% Sdladipn w\z/
@&z}m\mjy S H D CoupARGans

{ ﬁex “N? = Wt My Cf“‘i)jm(w)

[ANATRIX WOCT (PLICATEON

gt ks

—

S

|E&UL AV\XV\ e E'\><V\
Qreuris Ca=a bR

@

|

KUV Te &
dgeion s OG)

Unes WE 8z
D N MMl
omnd (n=0) Avirans Be egc,i; a

Mot L PMaduct
TR0 = Y\aG\TWDt @(V\g)

s

STRAEALS AGIRITIM

ﬂ“ A2 ‘Dl\ le
Gy Ro2 Lz:\ L)zz

STRASSEY e P 1 (g

AV AR (T T

MACT lpey T 2X2
MARCES UsNg Z MOThlosme,

] A CALER

(o A and) b e

AN

—

MATRICES. |
t :]%

Lok T@) o the RUv ’r(ws(
@? s AQO“- N AW
1o X0 MARICE S
Tﬁ%T@)?;T(g)HQ-V%

:‘?T(Q)#@(r\?'

—

07, b=2, dm=oGe) (\,’ = O(R :?Cf>
N of (’95 o ’?83 (HY PERSMITH & WINDSRAY

O(2%?6>
T :9(%a>. }

ZO(\J \/ NLL‘IA-MS

25?)

CSE 3500 Algorithms and Complexity — Fall 2016
Lecture 12: October 6, 2016

Worst case linear time selection

e In the last lecture we introduced the quick select algorithm and showed that it’s worst case
run time is (n?). It has a best case and average case run time of O(n).

e We also started our discussion on the worst case linear time algorithm of BFPRT.

e The BFPRT algorithm is nothing but the quick select algorithm wherein the pivot is picked
using a special algorithm.

o If X = Fky,ko, ..., k, is the input sequence, the algorithm groups the elements of X into
groups of size 5 each. Let these groups be G, Gy, ..., Gy /5. The median of each of these
groups is found. Let these medians be My, My, ..., M, s, respectively. The median M of
these medians is found recursively and used as the pivot.

e The entire algorithm can be summarized as follows:

BFPRT(X, i)
0) if | X| = 1 then output k; and quit;
1) Group X into groups G1,Gs, ..., G5 each of size 5;
Find the median M; of G; for i =1,2,..., %;
Let S = {My, M, ..., M,};
2) M =BFPRT(S, {5); (M is the median of group medians);
3) Partition X into X3 ={¢ge€ X :q< M} and Xy ={qge X :q¢> M},
4) if | X;| = ¢ — 1 then output M and quit;
if |X,| > i then BFPRT(X, i);
else BFPRT (X5, i — | X;] — 1);

Analysis of the BFPRT algorithm

e The element M we pick as the pivot is expected to be an approximate median of X. In
this case we can expect X; and X, to be nearly of the same size and subsequently, our
divide and conquer algorithm can be expected to yield a good performance.

e We will prove that X; and X, will be nearly of the same size.

e Note that out of the n/5 groups we have created in step 1, half of the groups will have a
median < M and the other half of the groups will have a median > M. Let G; be one
group whose median is < M. If the median of G; is M;, then M; < M. In this group G,
there are three elements that are less than or equal to M; (by definition of the median) and
all of these elements will also be < M (since M; < M). This means that at least 3 x %
elements of X will be < M. This in turn means that | Xs| < L£n.

e Along the same lines, we can also show that |X;| < n.
e Now we are ready to write a recurrence relation for the run time of the BFPRT algorithm.
e Let T'(n) be the run time of the BFPRT algorithm on any input of size n and for any 1.

e Step 1 takes O(n) time since we can find the median of each group in ©(1) time. Step 2
takes T'(n/5) time. Partitioning in step 3 can be done in ©(n) time. In step 4, in the worst
case, we recurse on X; or Xs. We know that the size of neither is more than %n. As a
result, we get:

n 7 n 7
Tn) < T (2)+T(on) +6m) <T(5)+T (o0) +d
(n) < 3 + (1On>+ (n) < 3 + T +dn
for some constant d.
e We can prove by induction that the above recurrence relation solves to: T'(n) = O(n).

e Induction Hypothesis: T'(n) < cn for some constant c¢. The base case can be proven easily.

e Induction step: Assume that the hypothesis holds for all the inputs of size up to n — 1.
We'll prove it for inputs of size n.

e T(n)<T (%) + T (%n) +dn < c% + 01—7071 +dn = 0.9cn + dn. The RHS will be < ¢n if
¢ > 10d.

e Thus we conclude that T'(n) < 10dn, i.e., T'(n) = O(n). We get the following:

Theorem. We can select the ith smallest element from any given sequence of n elements
in O(n) time. O
A randomized algorithm

e Floyd and Rivest (1975) have given a randomized algorithm that employs random sam-
pling. The steps in this algorithm are:

1) Pick a random sample S from the input sequence X;
2) Find two elements [and [from S such that:

2

the ith smallest element of X (call it ¢) has a value in the interval [l;,[5] and
Hr e X : i <z <ly}|is ‘small’ with a high probability.

3) Identify the set Y ={z € X : [} <z <ly};

4) Make sure that ¢ is in Y and perform an appropriate selection in Y

e We can show that the number of comparisons made by the above algorithm is n+min{i, n—
i} +o(n). This is one of the best-known algorithms for selection.

Matrix Multiplication

e Matrix multiplication is a very important problem in science and engineering with numerous
applications.

e Input for this problems are two matrices A and B of size n x n each. The goal is to compute
the product C' of A and B.

e We can come up with a simple cubic time algorithm for this problem as follows:

for : =1 ton do
for j =1tondo
Cli, j] = 0.0;
for k=1tondo
Cli. j] = Cli, 5] + Ali. K] * Bk, j};

e The above algorithm takes n multiplications and n — 1 additions for each output element
and there are a total of n? elements to be output. Thus the total time is n?(2n—1) = ©(n?).

Strassen’s algorithm

e Strassen has given an elegant divide-and-conquer algorithm for matrix multiplication that
takes subcubic time.

e Consider the problem of multiplying two 2 x 2 matrices. A straight forward algorithm for
this problem will take 8 multiplications. Strassen has come up with a way of mutiplying
them with only 7 multiplications.

e Let the matrices of interest be A = {all alﬂ and B = {bll bl?} .
21 G929 b21 b22

11 ¢
e Strassen computed the product C' = [1 12] of A and B as follows:
Co1 C22

di = (a11 + a22)(b11 + b22);
dy = (a1 + agz2)biy;

ds = ay1(brz — ba2);

dy = a22(bzl - 511);

ds = (a1 + a12)bas;

ds = (az1 — a11)(b11 + b12);
d7 = (a12 — ag2)(ba1 + b22);
ci1 = dy +dy — ds + dr;
c12 = d3 + ds;

Co1 = day + dy;

Co9 :dl—d2+d3+d6.

If A and B are generic n X n matrices, we could use the above algorithm to derive a divide-
and-conquer recursive algorithm to multiply them. W.l.o.g. assume that n = 2* for some
integer k.

Partition A and B as: A = [AH Aw} and B = [B” Biz

n n
, where A;; and B;; are § X 5
A21 AQQ Bgl BQQ}

submatrices, for 1 <i,5 < 2.

After partitioning A and B as above, use Strassen’s formulas to multiply A and B. What
is a scalar multiplication (or addition) in the above formulas will now become a submatrix
multiplication (or addition). Submatrix addition is easy. Submatrix multiplication is done
recursively.

Let T'(n) be the run time of Strassen’s algorithm to multiply two n x n matrices. Then,

we have:
n

T(n) = 7T(2

) + 0O(n?).

Note that we have to do seven submatrix multiplications (each taking 7" (%) time) and 18
submatrix additions (each taking ”IZ time).

Using the Master theorem, we can solve for T'(n) to get: T(n) = ©(n'°e27).

Since the publications of Strassen’s algorithm in 1969, a number of improvements have
been made: V. Pan (1978): O(n?™6); Coppersmith and Winograd (1983): O(n?376); V.
Williams (2014): O(n?373).

