

CSE 3500 Algorithms and Complexity – Fall 2016

Lecture 12: October 6, 2016

Worst case linear time selection

• In the last lecture we introduced the quick select algorithm and showed that it’s worst case

run time is Ω(n2). It has a best case and average case run time of O(n).

• We also started our discussion on the worst case linear time algorithm of BFPRT.

• The BFPRT algorithm is nothing but the quick select algorithm wherein the pivot is picked

using a special algorithm.

• If X = k1, k2, . . . , kn is the input sequence, the algorithm groups the elements of X into

groups of size 5 each. Let these groups be G1, G2, . . . , Gn/5. The median of each of these

groups is found. Let these medians be M1,M2, . . . ,Mn/5, respectively. The median M of

these medians is found recursively and used as the pivot.

• The entire algorithm can be summarized as follows:

BFPRT(X, i)

0) if |X| = 1 then output k1 and quit;

1) Group X into groups G1, G2, . . . , Gn/5 each of size 5;

Find the median Mi of Gi for i = 1, 2, . . . , n
5
;

Let S = {M1,M2, . . . ,Mn/5};
2) M =BFPRT(S, n

10
); (M is the median of group medians);

3) Partition X into X1 = {q ∈ X : q < M} and X2 = {q ∈ X : q > M};
4) if |X1| = i− 1 then output M and quit;

if |X1| ≥ i then BFPRT(X1, i);

else BFPRT(X2, i− |X1| − 1);

Analysis of the BFPRT algorithm

• The element M we pick as the pivot is expected to be an approximate median of X. In

this case we can expect X1 and X2 to be nearly of the same size and subsequently, our

divide and conquer algorithm can be expected to yield a good performance.

• We will prove that X1 and X2 will be nearly of the same size.

1

• Note that out of the n/5 groups we have created in step 1, half of the groups will have a

median ≤ M and the other half of the groups will have a median ≥ M . Let Gi be one

group whose median is ≤ M . If the median of Gi is Mi, then Mi ≤ M . In this group Gi

there are three elements that are less than or equal to Mi (by definition of the median) and

all of these elements will also be ≤ M (since Mi ≤ M). This means that at least 3 × n
10

elements of X will be ≤M . This in turn means that |X2| ≤ 7
10
n.

• Along the same lines, we can also show that |X1| ≤ 7
10
n.

• Now we are ready to write a recurrence relation for the run time of the BFPRT algorithm.

• Let T (n) be the run time of the BFPRT algorithm on any input of size n and for any i.

• Step 1 takes Θ(n) time since we can find the median of each group in Θ(1) time. Step 2

takes T (n/5) time. Partitioning in step 3 can be done in Θ(n) time. In step 4, in the worst

case, we recurse on X1 or X2. We know that the size of neither is more than 7
10
n. As a

result, we get:

T (n) ≤ T
(n

5

)
+ T

(
7

10
n

)
+ Θ(n) ≤ T

(n
5

)
+ T

(
7

10
n

)
+ dn

for some constant d.

• We can prove by induction that the above recurrence relation solves to: T (n) = O(n).

• Induction Hypothesis: T (n) ≤ cn for some constant c. The base case can be proven easily.

• Induction step: Assume that the hypothesis holds for all the inputs of size up to n − 1.

We’ll prove it for inputs of size n.

• T (n) ≤ T
(
n
5

)
+ T

(
7
10
n
)

+ dn ≤ cn
5

+ c 7
10
n + dn = 0.9cn + dn. The RHS will be ≤ cn if

c ≥ 10d.

• Thus we conclude that T (n) ≤ 10dn, i.e., T (n) = O(n). We get the following:

Theorem. We can select the ith smallest element from any given sequence of n elements

in O(n) time. �

A randomized algorithm

• Floyd and Rivest (1975) have given a randomized algorithm that employs random sam-

pling. The steps in this algorithm are:

1) Pick a random sample S from the input sequence X;

2) Find two elements l1 and l2 from S such that:

2

the ith smallest element of X (call it q) has a value in the interval [l1, l2] and

|{x ∈ X : l1 ≤ x ≤ l2}| is ‘small’ with a high probability.

3) Identify the set Y = {x ∈ X : l1 ≤ x ≤ l2};
4) Make sure that q is in Y and perform an appropriate selection in Y ;

• We can show that the number of comparisons made by the above algorithm is n+min{i, n−
i}+ õ(n). This is one of the best-known algorithms for selection.

Matrix Multiplication

• Matrix multiplication is a very important problem in science and engineering with numerous

applications.

• Input for this problems are two matrices A and B of size n×n each. The goal is to compute

the product C of A and B.

• We can come up with a simple cubic time algorithm for this problem as follows:

for i = 1 to n do

for j = 1 to n do

C[i, j] = 0.0;

for k = 1 to n do

C[i, j] = C[i, j] + A[i, k] ∗B[k, j];

• The above algorithm takes n multiplications and n− 1 additions for each output element

and there are a total of n2 elements to be output. Thus the total time is n2(2n−1) = Θ(n3).

Strassen’s algorithm

• Strassen has given an elegant divide-and-conquer algorithm for matrix multiplication that

takes subcubic time.

• Consider the problem of multiplying two 2× 2 matrices. A straight forward algorithm for

this problem will take 8 multiplications. Strassen has come up with a way of mutiplying

them with only 7 multiplications.

• Let the matrices of interest be A =

[
a11 a12
a21 a22

]
and B =

[
b11 b12
b21 b22

]
.

• Strassen computed the product C =

[
c11 c12
c21 c22

]
of A and B as follows:

3

d1 = (a11 + a22)(b11 + b22);

d2 = (a21 + a22)b11;

d3 = a11(b12 − b22);

d4 = a22(b21 − b11);

d5 = (a11 + a12)b22;

d6 = (a21 − a11)(b11 + b12);

d7 = (a12 − a22)(b21 + b22);

c11 = d1 + d4 − d5 + d7;

c12 = d3 + d5;

c21 = d2 + d4;

c22 = d1 − d2 + d3 + d6.

• If A and B are generic n×n matrices, we could use the above algorithm to derive a divide-

and-conquer recursive algorithm to multiply them. W.l.o.g. assume that n = 2k for some

integer k.

• Partition A and B as: A =

[
A11 A12

A21 A22

]
and B =

[
B11 B12

B21 B22

]
, where Aij and Bij are n

2
× n

2

submatrices, for 1 ≤ i, j ≤ 2.

• After partitioning A and B as above, use Strassen’s formulas to multiply A and B. What

is a scalar multiplication (or addition) in the above formulas will now become a submatrix

multiplication (or addition). Submatrix addition is easy. Submatrix multiplication is done

recursively.

• Let T (n) be the run time of Strassen’s algorithm to multiply two n × n matrices. Then,

we have:

T (n) = 7T
(n

2

)
+ Θ(n2).

• Note that we have to do seven submatrix multiplications (each taking T
(
n
2

)
time) and 18

submatrix additions (each taking n2

4
time).

• Using the Master theorem, we can solve for T (n) to get: T (n) = Θ(nlog2 7).

• Since the publications of Strassen’s algorithm in 1969, a number of improvements have

been made: V. Pan (1978): O(n2.796); Coppersmith and Winograd (1983): O(n2.376); V.

Williams (2014): O(n2.373).

4

