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CSE 3500 Algorithms and Complexity — Fall 2016
Lecture 12: October 6, 2016

Worst case linear time selection

e In the last lecture we introduced the quick select algorithm and showed that it’s worst case
run time is (n?). It has a best case and average case run time of O(n).

e We also started our discussion on the worst case linear time algorithm of BFPRT.

e The BFPRT algorithm is nothing but the quick select algorithm wherein the pivot is picked
using a special algorithm.

o If X = Fky,ko, ..., k, is the input sequence, the algorithm groups the elements of X into
groups of size 5 each. Let these groups be G, Gy, ..., Gy /5. The median of each of these
groups is found. Let these medians be My, My, ..., M, s, respectively. The median M of
these medians is found recursively and used as the pivot.

e The entire algorithm can be summarized as follows:

BFPRT(X, i)
0) if | X| = 1 then output k; and quit;
1) Group X into groups G1,Gs, ..., G5 each of size 5;
Find the median M; of G; for i =1,2,..., %;
Let S = {My, M, ..., M,};
2) M =BFPRT(S, {5); (M is the median of group medians);
3) Partition X into X3 ={¢ge€ X :q< M} and Xy ={qge X :q¢> M},
4) if | X;| = ¢ — 1 then output M and quit;
if |X,| > i then BFPRT(X, i);
else BFPRT (X5, i — | X;] — 1);

Analysis of the BFPRT algorithm

e The element M we pick as the pivot is expected to be an approximate median of X. In
this case we can expect X; and X, to be nearly of the same size and subsequently, our
divide and conquer algorithm can be expected to yield a good performance.

e We will prove that X; and X, will be nearly of the same size.



e Note that out of the n/5 groups we have created in step 1, half of the groups will have a
median < M and the other half of the groups will have a median > M. Let G; be one
group whose median is < M. If the median of G; is M;, then M; < M. In this group G,
there are three elements that are less than or equal to M; (by definition of the median) and
all of these elements will also be < M (since M; < M). This means that at least 3 x %
elements of X will be < M. This in turn means that | Xs| < L£n.

e Along the same lines, we can also show that |X;| < n.
e Now we are ready to write a recurrence relation for the run time of the BFPRT algorithm.
e Let T'(n) be the run time of the BFPRT algorithm on any input of size n and for any 1.

e Step 1 takes O(n) time since we can find the median of each group in ©(1) time. Step 2
takes T'(n/5) time. Partitioning in step 3 can be done in ©(n) time. In step 4, in the worst
case, we recurse on X; or Xs. We know that the size of neither is more than %n. As a
result, we get:

n 7 n 7
Tn) < T (2)+T(on) +6m) <T(5)+T (o0 ) +d
(n) < 3 + (1On>+ (n) < 3 + T +dn
for some constant d.
e We can prove by induction that the above recurrence relation solves to: T'(n) = O(n).

e Induction Hypothesis: T'(n) < cn for some constant c¢. The base case can be proven easily.

e Induction step: Assume that the hypothesis holds for all the inputs of size up to n — 1.
We'll prove it for inputs of size n.

e T(n)<T (%) + T (%n) +dn < c% + 01—7071 +dn = 0.9cn + dn. The RHS will be < ¢n if
¢ > 10d.

e Thus we conclude that T'(n) < 10dn, i.e., T'(n) = O(n). We get the following:

Theorem. We can select the ith smallest element from any given sequence of n elements
in O(n) time. O
A randomized algorithm

e Floyd and Rivest (1975) have given a randomized algorithm that employs random sam-
pling. The steps in this algorithm are:

1) Pick a random sample S from the input sequence X;
2) Find two elements [ and [ from S such that:

2



the ith smallest element of X (call it ¢) has a value in the interval [l;,[5] and
Hr e X : i <z <ly}|is ‘small’ with a high probability.

3) Identify the set Y ={z € X : [} <z <ly};

4) Make sure that ¢ is in Y and perform an appropriate selection in Y

e We can show that the number of comparisons made by the above algorithm is n+min{i, n—
i} +o(n). This is one of the best-known algorithms for selection.

Matrix Multiplication

e Matrix multiplication is a very important problem in science and engineering with numerous
applications.

e Input for this problems are two matrices A and B of size n x n each. The goal is to compute
the product C' of A and B.

e We can come up with a simple cubic time algorithm for this problem as follows:

for : =1 ton do
for j =1tondo
Cli, j] = 0.0;
for k=1tondo
Cli. j] = Cli, 5] + Ali. K] * Bk, j};

e The above algorithm takes n multiplications and n — 1 additions for each output element
and there are a total of n? elements to be output. Thus the total time is n?(2n—1) = ©(n?).

Strassen’s algorithm

e Strassen has given an elegant divide-and-conquer algorithm for matrix multiplication that
takes subcubic time.

e Consider the problem of multiplying two 2 x 2 matrices. A straight forward algorithm for
this problem will take 8 multiplications. Strassen has come up with a way of mutiplying
them with only 7 multiplications.

e Let the matrices of interest be A = {all alﬂ and B = {bll bl?} .
21 G929 b21 b22

11 ¢
e Strassen computed the product C' = [ 1 12] of A and B as follows:
Co1  C22



di = (a11 + a22)(b11 + b22);
dy = (a1 + agz2)biy;

ds = ay1(brz — ba2);

dy = a22(bzl - 511);

ds = (a1 + a12)bas;

ds = (az1 — a11)(b11 + b12);
d7 = (a12 — ag2)(ba1 + b22);
ci1 = dy +dy — ds + dr;
c12 = d3 + ds;

Co1 = day + dy;

Co9 :dl—d2+d3+d6.

If A and B are generic n X n matrices, we could use the above algorithm to derive a divide-
and-conquer recursive algorithm to multiply them. W.l.o.g. assume that n = 2* for some
integer k.

Partition A and B as: A = [AH Aw} and B = [B” Biz

n n
, where A;; and B;; are § X 5
A21 AQQ Bgl BQQ}

submatrices, for 1 <i,5 < 2.

After partitioning A and B as above, use Strassen’s formulas to multiply A and B. What
is a scalar multiplication (or addition) in the above formulas will now become a submatrix
multiplication (or addition). Submatrix addition is easy. Submatrix multiplication is done
recursively.

Let T'(n) be the run time of Strassen’s algorithm to multiply two n x n matrices. Then,

we have:
n

T(n) = 7T(2

) + 0O(n?).

Note that we have to do seven submatrix multiplications (each taking 7" (%) time) and 18
submatrix additions (each taking ”IZ time).

Using the Master theorem, we can solve for T'(n) to get: T(n) = ©(n'°e27).

Since the publications of Strassen’s algorithm in 1969, a number of improvements have
been made: V. Pan (1978): O(n?™6); Coppersmith and Winograd (1983): O(n?376); V.
Williams (2014): O(n?373).



