






















CSE 3500 Algorithms and Complexity – Fall 2016

Lecture 10: September 29, 2016

Quick sort: Average Run Time

• In the last lecture we started analyzing the expected run time of quick sort. Let

X = k1, k2, . . . , kn be the input sequence and let π1, π2, . . . , πn be the sorted order of

X. We obtained the following equation for the expected run time A(n) of quick sort

on an input of n elements (where pij is the probability that the algorithm will compare

πi with πj):

A(n) =
n∑

j=i+1

n∑
i=1

pij. (2)

• Note that in the quick sort algorithm each input key serves as the pivot element at

some level of recursion.

• From out of the elements πi, πi+1, . . . , πj−1, πj, if either πi or πj serves as the par-

titioning element before any of the elements πi+1, πi+2, . . . , πj−2, πj−1, then πi and

πj will be compared in the algorithm; On the other hand if any of the elements

πi+1, πi+2, . . . , πj−2, πj−1 is picked as the pivot before either πi or πj, then these two

elements will not be compared.

• As a result, we infer that pij = 2
j−i+1

. Substituting this in equation 2, we get:

A(n) =
n∑

j=i+1

n∑
i=1

2

j − i+ 1
=

n∑
i=1

n∑
j=i+1

2

j − i+ 1
=

n∑
i=1

[
2

2
+

2

3
+ · · ·+ 2

n− i+ 1

]

≤
n∑

i=1

2
[
1 +

1

2
+

1

3
+ · · ·+ 1

n

]
.

• Recall that we can aproximate sums with integrals. Using this technique, we see that:∑n
i=1

1
i

= Θ
(∫ n

1
1
i
di
)

= Θ(log n).

• Therefore, it follows that A(n) ≤ ∑n
i=1 Θ(log n). In other words, A(n) = O(n log n).

The following Lemma follows.

Lemma. The expected run time of quick sort on n elements is O(n log n). 2



Randomized Sorting Algorithms

• Quick sort can be converted to a randomized algorithm by picking the pivot element

randomly. In this case we can show that the expected run time is O(n log n) (where

the expectation is computed in the space of all possible outcomes for coin flips).

• We can modify quick sort as follows. Pick a random sample of s elements (for some

relevant value of s), find the median of this sample, and use this median as the pivot

element. For example, s could be 5, 11, 15, etc. This algorithm will perform better

than quick sort in practice.

• In 1971 Frazer and McKellar came up with the following algorithm:

1) Pick a random sample of s elements fromX;

2) Sort the sample and let l1, l2, . . . , ls be the sorted sample;

3) Partition X into s+ 1 parts as follows. X1 = {q ∈ X : q ≤ l1};
Xi = {q ∈ X : li−1 < q ≤ li}, for i = 2, 3, . . . , s, and Xs+1 = {q ∈ X : q > ls};

4) for i = 1 to s+ 1 do

Sort and output Xi.

• The above algorithm is one of the best known algorithms for sorting. This algorithm

has been implemented over a variety of computing models and architectures. The

number of comparisons made by this algorithm is very close to the lower bound of

log n!.

A Lowerbound for Sorting

• We will prove the lower bound on the comparison tree model. This model accounts for

only the comparisons made in the algorithm.

• A comparison tree is a binary tree. In a comparison tree comparison between a pair

of elements is done at every node. Based on the outcome of this comparison we move

down to an appropriate child of this node. The leaves of the tree correspond to answer

nodes.

• A comparison tree is constructed for every input size.

• For a given instance of the problem, we start at the root of the tree, perform the

comparison dictated by the root. Based on the outcome of this comparsion, we move

to a relevant child, perform the comparison dictated by this node, and so on. This is

continued until we reach a leaf. The leaf we reach will have the correct answer.

• We make the following observations: 1) For any given instance of sorting, we traverse

through only one path in the tree; 2) Thus the worst case run time is the height of the



tree; 3) There has to be at least one leaf corresponding to every possible answer; and 4)

Since there are n! possible permutations for any sequence of n elements, a comparison

tree that sorts n elements should have at least n! leaves.

• We know that the height of a binary tree with N leaves is at least logN .

• Therefore, the height of a comparison tree that sorts n elements will be at least log n!.

• In turn, it follows that the number of comparisons needed to sort n elements, in the

worst case, is at least log n!.

• We can show that log n! = Θ(n log n) (for example using Stirling’s approximation for

n!).

Bucket Sorting

• We might be able to sort n elements in time better than log n! if we have additional

information about the elements (than just knowing that they come from a linear order).

• For example consider a sequence X of n elements where each element is either zero or

one. We can sort X in linear time as follows: We add the bits in X. Let q be this

integer. Note that q is the number of ones in X. We output n− q zeros followed by q

ones.

• We can extend the above idea to derive the bucket sort algorithm.

• Let X = k1, k2, . . . , kn be the input sequence where each ki is an integer in the range

[1,m] (for some integer m). We can sort X by keeping a bucket for each possible value.

We do one pass through the input and place each element in the right bucket based

on its value. Followed by this we output the buckets in order.

• A pseudocode for tha above algorithm is:

1) Create an array A[1 : m] of m empty lists;

2) for i = 1 to n do

Insert ki to the tail of the list A[ki];

3) for i = 1 to m do

Output the elements in the list A[i] starting from the head;

• In the above algorithm we spend O(m) time for step 1, O(n) time for step 2, and

O(m+n) time for step 3 (since there are m lists and there are a total of n elements in

all the lists together). Thus, the run time of this bucket sort algorithm is O(m+ n).

• Bucket sort will take linear time if m = O(n).



• The run time of bucket sort will be better than that of any comparison sorting algorithm

(such as heap sort) as long as m = o(n log n).

• In the next lecture we will see that we can sort n integers in O(n) time if they come

from the range [0, nc], c being any constant.


