


























CSE 3500 Algorithms and Complexity – Fall 2016

Lecture 1: August 30, 2016

Algorithms

• An algorithm is nothing but a technique used to solve a given problem.

• Problems can be categorized into two: Decidable and Undecidable.

• For an undecidable problem no algorithm can be devised. An example is the Halting

Problem. The halting problem taskes as input an arbitrary program and an arbitrary

input and the problem is to check if this program will ever halt on the input.

• For decidable problems we can devise algorithms. Decidable problems can be catego-

rized into intractable and tractable problems.

• A problem is intractable if the best known algorithms for solving the problem take a

very long time. Examples: Traveling Salesman Problem, Clique, etc.

• A problem is tractable if algorithms with a reasonable run time can be developed for

solving the problem.

Algorithm Description

• An algorithm can be described in a machine and programming language independent

manner. To make the description concise a psedocode can be used. Example constructs

that can be used follow.

• assignment statement

• if <condition> then <statement1> else <statement2>

• for <variable>:= <start> to <end> do

{ a sequence of statements }

• while <condition> do

{ a sequence of statements }



Example Algorithms

• An elegant way to define a problem is to specify the input and output.

• Input: X = k1, k2, . . . , kn; Output: the smallest element of X. Here is an algorithm:

Result = k1;

for i = 2 to n do

if ki < Result then Result = ki;

Output Result

• Another example: Input: X = k1, k2, . . . , kn; Output: Sorted X. Here is an algorithm

(called selection sort):

for i = 1 to n do

Find and output the smallest element k of X;

Remove k from X;

Performance Measures

• Two performance measures are popular: Time Complexity (also known as Run Time)

and Space Complexity.

• Note that every algorithm consists of a sequence of basic operations. Time complexity

of an algorithm is defined as the total number of basic operations performed in the

algorithm. Basic operations include +,−, /, ∗, comparison, and memory lookup.

• The above definition is machine and programming language independent. We could

readily convert time complexity into seconds given a specific machine.

• The time complexity of the minimum finding algorithm is n−1. Here we consider only

the comparisons performed in the algorithm.

• Time complexity of (i.e., the total number of comparisons done in) the selection sort

algorithm is (n− 1) + (n− 2) + · · ·+ 2 + 1 = n(n−1)
2

.

• Space complexity is defined as the total number of memory cells used in the algorithm.

We assume that one element (such as a real number) occupies one memory cell.

Input Size

• Input size refers to the number of memory cells needed to specify an instance of the

problem under concern.



• For the problem of sorting n elements the input size is n.

• For the problem of multiplying two n×n matrices the input size is 2n2 since there are

n2 elements in each matrix.

• Both time and space complexities are integer functions of the input size.

Different Time Complexities

• Consider the following search problem. Input X = k1, k2, . . . , kn and another element

x. Output: “yes” if x ∈ X and “no” otherwise.

• A simple algorithm to solve this problem compares x with k1. If there is a match, we

output “yes” and quit; if not we compare x with k2 and if there is a match we output

“yes” and quit; and so on.

• The above algorithm brings out the need for different types of time complexities. We

can define the best case, the worst case, and average case time complexities.

• The best case time complexity refers to the least time complexity achievable across all

possible inputs. The worst case is defined similarly.

• The average case time complexity is defined as follows. Let D be the set of possible

inputs and let TI be the run time of an algorithm on instance I (for any I ∈ D). Then,

the average time complexity A(n) of this algorithm is defined as:

A(n) =

∑
I∈D TI

|D|
.

• More generally, we can define A(n) as:

A(n) =
∑
I∈D

pITI

where pI is the probability that I occurs as the input and TI is the time complexity of

the algorithm on input I (for any I ∈ D).

Searching Example

• For the searching algorithm the best case run time is 1; the worst case run time is n.

The average case run time can be computed considering all possible inputs:



Case Time

x = k1 1

x 6= k1, x = k2 2

· · · · · ·
x 6= k1, x 6= k2, . . . , x 6= kn−1, x = kn n

x 6∈ X n

If we assume that each of the above n + 1 possibilities is equally likely, then:

A(n) =
1 + 2 + · · ·+ n + n

n + 1
=

n(n+1)
2

+ n

n + 1
=

n

2
+

n

n + 1
.

Asymptotic Functions

• Asymptotic functions are used to express the asymptotic time complexities of algo-

rithms, typically in a simple form.

• Let f(n) and g(n) be any two non-negative integer functions of n. We say f(n) =

O(g(n)) if there exist two constants c and n0 such that f(n) ≤ c g(n) for all n ≥ n0.

This basically means that for all sufficiently large values of n, the function f(n) is no

more than a constant multiple of g(n).

• Please note that to prove that f(n) = O(g(n)) we are not required to find the smallest

constants c and n0 for which the above inequality holds.

• Example: Let f(n) = 7n2 + 15n − 1000 and g(n) = n2. Claim: f(n) = O(g(n).

Proof: We have to find two constants c and n0 such that the above inequality holds.

Note that 15n ≤ 15n2 for all n ≥ 1 and −1000 ≤ 1000n2 for all n ≥ 1. Thus it follows

that 7n2 + 15n − 1000 ≤ 1022n2, for all n ≥ 1. As a result, for a choice of c = 1022

and n0 = 1 the inequality of interest holds and hence f(n) = O(g(n)). 2

• Example: Let f(n) = n2 log n and g(n) = n3. (When the base of a logarithm is not

specified the base implied is 2). Claim: f(n) = O(g(n)). Proof: Note that n2 log n ≤
n3 for all n ≥ 1 and 32n ≤ 32n3 for all n ≥ 1. Therefore, n2 log n + 32n ≤ 33n3 for

all n ≥ 1. In other words, for a choice of c = 33 and n0 = 1, the inequality holds and

hence f(n) = O(g(n)). 2

• Fact: If f(n) is a non-negative integer function of n such that f(n) = akn
k+ak−1n

k−1+

· · · + a2n
2 + a1n + a0, then f(n) = O(nk). Here ak, ak−1, . . . , a1, a0 are constants and

k is an integer constant.

Proof: Note that ain
i ≤ |ai|nk for all 0 ≤ i ≤ k and n ≥ 1. Therefore, for a

choice of c =
∑k

i=0 |ai| and n0 = 1, the inequality of interest holds. Thus, it follows

that f(n) = O(g(n)).2



• For any two non-negative integer functions f(n) and g(n) of n, we say that f(n) =

Ω(g(n)) if we can find two constants c and n0 such that f(n) ≥ c g(n). Here the

implication is that for all sufficiently large values of n, the value of f(n) is lower

bounded by a constant multiple of g(n).

• Fact: f(n) = Ω(g(n)) if and only if g(n) = O(f(n)).

• For any two non-negative integer functions f(n) and g(n) of n, we say that f(n) =

Θ(g(n) if f(n) = O(g(n) and f(n) = Ω(g(n)).


