CSE 5095 Research Topics in Big Data Analytics - Spring 2014
Note taker: Tham Hoang

Date: 30t Jan 2014

SELECTION ALGORITHM:

Input: X =kq,ky, -, k,

Output: The i™" smallest elements of X

Lemma: We can solve this problem in O (1) passes through the data.
Proof:

Chernoff bounds:

Let Y be a binomial random variable (denoted as B(n, p)) with parameters n
and p.

Then,
m
Prob.[Y > m] < (T:n—p) e ™t vym>np (1)

Prob.[Y > (1 + &)np] < exp(—&2np/3) (2)

Prob.[Y < (1 — &)np] < exp(—e2np/2) (3)

A Sampling lemma (Rajasekaran & Reif 1986)

Let X be any set of elements and let S be a random sample of X with s = |S].

Let g be an element of S such that rank(g, S) = .
n, .
Then, the expected rank of ¢ in X = — *J

Let r; be the rank of g in X.

Then, Prob. [|r; —j *~| >3 }_ Jlogn]<n¢

A Randomized Selection Algorithm

+ Pick a sample S from X. Identity two elements [; and [, from S whose ranks

in S are (i i— 8) and (i %+ 6), respectively.

If § = \/4aslogn, then we can show that [, and [, will bracket the
it" smallest element of X with high probability.

Also, |{k € X,l; <k < [,}| will be ‘small’ with high probability.

+ Using [1 and > eliminate all the keys of X that do not have a value in the
interval [/, I2]. Update the values of n and i.

+ Repeat the above process of sampling and elimination until we are left with
< M elements. Bring them to memory, do a selection, and output.

To begin with, all keys are alive; /* N is the number of alive keys
Repeat

(1) Add every alive key to the sample with a probability of %
Expected number of keys in S = % This number is
< 2 M with high probability.

(2) Pick l;and [, such that Rank(l;,S) = i*%— J4aslogn and
Rank([,, S) = i* % + /4aslogn.

(3) Count the number of alive keys that are < [;. Let this be n;. Count
the number of alive keys with a value € [[;, [,]. Let this be n,.

(4) Ifi<nori>n;+ nyorn, > MIZA then go to step 1.
(5) Delete all the alive keys that do not have a value in the range
[l1, L]

(6) Ifn, < M then quit the repeatloop; N:=n,; i:=i-ny;

Forever

(7) Find and output the i** smallest from among the alive keys.

Rank of /1 lies in i Rank of Iz lies in
this interval w.h.p. this interval w.h.p.
. N . N . N . N
L—\/4_E /1ogN L—\/4_E /logN l+\/4_ﬁw/logN L+\/4_E v/ 1ogN
N N N N
- mﬁ /1ogN + mﬁ /logN - \/3_E /1ogN + \/B_E J/1ogN

. . N N _
If rank(q, S) =j then Prob. [|r; — j *;|>\/3 ﬁ,/logN]SN a

= n, SZ(\/4a+ \/30{)% logN with high probability, ie, n, =

0 (% logN).

If N is a polynomial in M thenn, = 0 (MIXA).

We will be done in a constant number of repeat loops with high probability.

In each iteration of the repeat loop, we spend 2 passes through the ALIVE
KEYS.

The number of alive keys decreases by a factor of M%* in every iteration.

= Total number of passes through the data is < 2 =» the number of [/0’s
is<2 % with high probability, B being the block size.

A deterministic algorithm (Rajasekaran 2001)

Deterministic sampling

k1, Ko, ooy ke kys1s s Kom s fen R,

th
Sort and pick every VM element

... degree=

M keys M keys

th
Sort and pick every VM element

Rj; IR/ < M

Think of a tree where we have % leaves with M keys in each leaf.

Sort each leaf. Each leaf sends its keys with ranks

VM, 2Y/M, 3v/M ...to its parent. Let the leaves be at level 0. We have \/% keys in

level 1. We group these keys into groups of size M each. From each such group
VM keys are sent to the next level, and so on.

In general, at each node there are M keys. Each node sorts its keys and sends
VM keys to the next level, and so on. Let the root be at level j. IRj| < M.

We'll pick two keys I1 and I; from Rj such that these two keys will bracket the
i smallest element of X. We eliminate all the keys of X that do have a value in
the range [11, 2] and update the values of i and n.

The above process of sampling and elimination continues until the number of
remaining keys is no more than M. When this happens, we perform an
appropriate selection from the remaining keys and output this key.

