Yaira K. Rivera Sanchez CSE-5095-005 January 28, 2014

CLASS NOTES
Research Topics in Big Data Analytics
Prof. Sanguthevar Rajasekaran

Recap of the last class:

* Two categories of models of parallel computing were introduced, namely, the Fixed
Connection Machines and the Shared Memory or Parallel Random Access Machines
(PRAMs). Different kinds of PRAMs were defined. The slow-down lemma was stated.
We saw how to compute the maximum of n given numbers in parallel. Finally, we
discussed a CREW PRAM algorithm for the prefix computation problem.

Out-of-Core Computing:

* When we have too much data we may not be able to store all of them in the main
(i.e., core) memory of the computer that we are using. Most of the data may have to
be stored in secondary storage devices such as disks. We can only bring to the core
memory a portion of the data at any given time, do some processing on it and store
the (partial results) in the disk.

There is a hierarchy in memory devices.

A hierarchy of memory devices could be: Registers, Instruction Cache, L1 Cache, L2
Cache, Core Memory, Disk.

The devices of the list above are in increasing order in terms of the time they take to
access data. Therefore, the first device is the fastest one to access data and the last
device shown on the list is the slowest one to access data.

The time it takes to access data in the following devices are:
Registers -> Nanosecond (1079)

Core Memory -> Several Nanoseconds

Disk -> Several Milliseconds

SSDs -> Microseconds

O O O O

* It pays to minimize the number of [/O operations since accessing data in the disk
takes more time than having the data in a higher place on the list above.

We can let the OS handle the /0 operations on the disk(s). However, this may be
highly inefficient. The OS typically uses prefetching or caching to minimize 1/0
operations. We can get vastly better performances by explicitly handling 1/0
operations in our algorithms.

* Definition: An Out-of-Core algorithm is one where the algorithm explicitly dictates
how to handle the I/0’s. It focuses on trying to minimize the number of I/0’s.

* Representation of a disk:

Track

Block size = B T

Arm: Reads the
————— data of the disk and

\/\ moves horizontally.

Rotation of the disk

* [/0 operations happen in units of blocks. Due to the latency involved in seeking the
right track, moving the arm, etc., it helps to move more than one records in any
single I/0 operations. This is why a block is involved in any I/0. A block consists of
many records. We let B denote the size of a block.

Sorting:

e INPUT: X = kq,k,,k,
e OUTPUT: Sorted order of X.

* Fact: Sorting n keys in core requires (1(n log n) comparisons.

Lemma: Sorting n keys (residing in a disk) needs) (B log (M/B) /0 operations.

* Here M is the core memory size and B is the block size.

* Definition: One pass through the data refers to n/B I/0 operations. Each input key
is brought into core memory exactly once (in one pass).

Sorting Algorithm:
* First attempt:

1) Do one pass through the data and form runs of length M each. Arunisa
sorted subsequence.
* We have to merge these n/M runs.

2) We can use 2-way merge:

Run 1 \ w—
Run 2 / \
Run 3 /
\ Merge
Run 4 / \ Merge
\ Merge /
Runn/M / Y
2M
M

e 2M is the length of the run obtained by merging two runs of length M
each.

* At each level of merging, the number of elements in any run will keep
increasing by a factor of 2 until we are left with two runs of length n/2
each. When we merge these two we get sorted X.

Consider the merging of two runs of length ¢ each:

<€ ? >

* We keep M/2B blocks of R; and M/2B blocks of R, in the main memory. Merge these
in the computer.

* When B keys in the output are produced, output this block in the disk.

* When B keys have been consumed from any run, we do one read (i.e., one block) of
that run from the disk.

* Example 1:
R;:5,11,15,17, 28, 32,45

R,:3,8,21,23,35,42,75,76

o Let M=8 and B=2. To begin with the core memory has 5,11,15,17 from R; and
3,8,21,23 from Rz. We start merging these two. The first two output elements are
3 and 5. These are output to the disk as a part of the merged run. The next
element output is 8. At this point, we have used a block of Rz and hence the next
block of Rz (i.e., 35,42) will be read into the core memory. The next element
outputis 11. We write 8,11 into the disk. We also read the next block of Ri; and
So on.

¢ Example 2:
R::1,2,3,4,56,7,8
R,:9,10,11,12,13, 14,15, 16

o To begin with:
= Core memory:

1 2 3 4‘56‘78‘

9 10 11 12 13 14‘15 16‘

To begin with we have 4 elements from each run in the core memory. The
first two elements output are 1 and 2. They are written to the disk. We then
read 5 and 6 from R1; and so on.

* Analysis:

- To merge two sequences of length [each, the number of read [/0
operations is equal to 2[/B (i.e. we only do one pass through these two

runs).
N
n/2 n/2 <€ one pass
4M | 4M € one pass

\ 2M €= one pass
7N\

M M

SN, SN/

= The total number of passes is: log(n/M) + 1

= The number of I/0’s is: %(log (ﬁ) + 1).

¢ Algorithm #2:
o A natural extension of the previous algorithm is to merge k runs at a time (for
some k>2).
o We have a k-ary tree:

/(f\ /ko\ /ko\ N/M leaves
* %
M M M M M

o Consider any node in the tree. We merge k runs of length £ each:
o

< ¢ =
R;
< ¢ >
Ry
< ¢ >
1) Bring M /(kB) blocks from each run into the core memory to begin with.

2)

3)

Start merging them. When a block of output is ready, write it into the disk.
When a block from any run has been consumed, read one block from that
run.

Repeat step 2 as needed.

Analysis:

1
The height of the tree is equal to logy (n/M), which is equal to O%O(;L{CM)'

We can choose k = M/B.

In this case, each level of mergings in the tree can be done in one pass
through the data.

When k is greater than the previous value, we can only keep a fraction of
each block in core memory at any given time.

The larger the value of k, the better it is for us. Nevertheless, there is a
limit in how big the value of k can be since we have to make sure that
every level gets done using one pass only (k can only be as large as

(M/B)).
In this case, we have an asymptotically optimal algorithm.

log (n/M)

log (M/B) +1

o Number of passes =

log(n/M)

e _n
o Number of [/0’s = B (log(M/B)

+1).

