
CSE 3500 Algorithms and Complexity

Fall 2016; Exam III; Help Sheet

TREE TRAVERSAL AND GRAPH SEARCH. We showed that there are many ways to traverse

a tree and such a traversal can be completed in linear time. If G(V,E) is any input graph, then we can

search through this using Depth First Search (DFS) or Breadth First Search (BFS). Each of these searches

takes O(|V |+ |E|) time.

PARALLEL ALGORITHMS. The model we used was the PRAM (Parallel Random Access Machine).

Processors communicate by writing into and reading from memory cells that are accessible to all. De-

pending on how read and write conflicts are resolved, there are variants of the PRAM. In an Exclusive

Read Exclusive Write (EREW) PRAM, no concuurent reads or concurrent writes are permitted. In a

Concurrent Read Exclusive Write (CREW) PRAM, concurrent reads are permitted but concurrent writes

are prohibited. In a Concurrent Read Concurrent Write (CRCW) PRAM both concurrent reads and con-

current writes are allowed. Concurrent writes can be resolved in many ways. In a Common CRCW PRAM,

concurrent writes are allowed only if the conflicting processors have the same message to write (into the

same cell at the same time). In an Arbitrary CRCW PRAM, an arbitrary processor gets to write in cases

of conflicts. In a Priority CRCW PRAM, write conflicts are resolved on the basis of priorities (assigned to

the processors at the beginning).

We presented a Common CRCW PRAM algorithm for finding the Boolean AND of n given bits in O(1)

time. We used n processors. As a corollary we gave an algorithm for finding the minimum (or maximum)

of n given arbitrary real numbers in O(1) time using n2 Common CRCW PRAM processors.

We also discussed an optimal CREW PRAM algorithm for the prefix computation problem. This

algorithm uses n
logn processors and runs in O(log n) time on any input of n elements. (For the prefix

computation problem the input is a sequence of elements from some domain Σ: k1, k2, . . . , kn and the

output is another sequence: k1, k1 ⊕ k2, . . . , k1 ⊕ k2 ⊕ k3 ⊕ · · · ⊕ kn, where ⊕ is any binary associative and

unit-time computable operation on Σ.) As an application of prefix computation, we proved that sorting of

n elements can be done in O(log n) time using n2

logn CREW PRAM processors. We discussed Preparata’s

algorithm for sorting. This algorithms runs in O(log n) time using n log n CREW PRAM processors.

INTRACTABLE PROBLEMS. A problem π1 is said to be polynomially reducible to another problem

π2 (denoted as π1 ∝ π2) if the following statement holds: ”If π2 can be solved in deterministic polynomial

time then π1 can also be solved in deterministic ploynomial time”.

A problem π is said to be NP-hard if π′ ∝ π for every π′ ∈ NP. Equivalently, a problem π is NP-hard

if π′ ∝ π where π′ is known to be NP-hard. A problem π is NP-complete if π is in NP and π is NP-hard.

The following are examples of NP-complete problems: SAT, CLIQUE, Node Cover Decision (or Vertex

Cover) Problem, 3SAT, and Subset Sum. We briefly summarized Cook’s theorem that states that SAT is

NP-complete. Using this theorem we showed that the following problems are also NP-complete: CLIQUE

and Node Cover Decision Problem.

