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SELECTION. Given a sequence of n keys and an integer i with 1 ≤ i ≤ n, the problem of selection is to identify
the ith smallest element from out of the n keys. The BFPRT algorithm solves this problem in O(n) time. We

also summarized a randomized selection algorithm that takes Õ(n) time.

BUCKET and RADIX SORTING. If X is a sequence of n keys where each key is an integer in the range
[1,m] then X can be sorted in O(m + n) time. If m = nc for any constant c, then radix sort can be used to sort
X in O(n) time.

MATRIX MULTIPLICATION. Strassen’s algorithm multiplies two n× n matrices in O(nlog2 7) time.

GREEDY ALGORITHMS. This technique is used when we are interested in finding a subset of n given
objects that satisfies a set of constraints and optimizes a given objective function. The general idea is to start
with the empty set; select the next object O to be examined using a selection criterion; if the inclusion of O into
the solution S will still keep it feasible we add O into S, otherwise we discard O; proceed in a similar fashion
until all the objects have been examined; and finally output the solution S.

We were able to solve the fractional knapsack problem in O(n log n) time using the greedy approach. The
idea is to process the objects in nonincreasing order of their profit densities.

We also showed that the minimum weight spanning tree problem can be solved in O((|V |+ |E|) log |V |) time
on any weighted undirected graph G(V,E) employing the greedy technique. Prim’s algorithm has only one tree
at any time. It looks at all the outgoing edges from the tree and includes the edge with the minimum weight.
Kruskal’s algorithm starts with a forest of n trees and inserts one edge at a time into the forest (if the edge does
not cause a cycle). The edges are sorted in nondecreasing order of the edge weights to begin with.

Dijkstra’s algorithm for the single source shortest path problem runs in O((|V | + |E|) log |V |) time. This
algorithm assumes that the input graph does not have any edges with negative weights.

DYNAMIC PROGRAMMING. Dynamic programming applies to problems for which the solutions can be
thought of as sequences of decisions.

The general solution technique here typically involves the following steps: 1) define a suitable function such
that the outputs of interest are specific values of this function; 2) write a recurrence relation for this function;
and 3) solve the recurrence relation to get the values of interest – the base cases for the function are usually the
inputs.

For the zero-one knapsack problem, we define fi(y) to be the optimal profit obtainable from the objects 1
through i when the capacity constaint is y. A recurrence relation for fi(y) takes the form:

fi(y) = max{fi−1(y), fi−1(y − wi) + pi}.

When the weights are integers, the above recurrence relation can be used to solve the problem in O(mn) time.
In the all-pairs shortest paths problem, the input is a directed graph G(V,E). The goal is to find the shortest

path from the node i to node j for every pair of nodes i and j in V . We define the function Ak(i, j) to be the
shortest path length from i to j from among all paths (from i to j) whose intermediate nodes are ≤ k. We are
interested in the values An(i, j) (for every i and j in V ), where n = |V |. A recurrence relation for Ak(i, j) can be
written as follows:

Ak(i, j) = min{Ak−1(i, j), Ak−1(i, k) + Ak−1(k, j)}.

We start with A0 and compute A1, A2, . . . , An. The total run time is O(n3).
We also proved that the single source shortest paths problem can be solved in O(|V | |E|) time on any weighted

directed graph G(V,E). In addition, we showed that the string editing problem on two strings of length n and
m can be solved in time O(mn).


