CSE 3500 Algorithms and Complexity Fall 2016; Exam I; Help Sheet

1. Preliminaries. We say $f(n)=O(g(n))$ if $f(n) \leq c g(n)$ for all $n \geq n_{0}$ for some constants c and n_{0}. We say $f(n)=\Omega(g(n))$ if and only if $g(n)=O(f(n))$. Also, $f(n)=\Theta(g(n))$ if $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$. We say $f(n)=o(g(n))$ if $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$.
A partial list of functions in increasing order is: $O(1),(\log n)^{\epsilon}, \log n,(\log n)^{1+\mu}, n^{\epsilon}$, $n, n^{1+\mu}, 2^{n^{\epsilon}}, 2^{n}, 2^{n^{1+\mu}}$ where $0<\epsilon<1$ and $\mu>0$ are constants.
Stirling's approximation: $n!\approx(n / e)^{n} \sqrt{2 \pi n}$.
$\sum_{i=1}^{n} i=n(n+1) / 2 . \sum_{i=1}^{n} i^{2}=n(n+1)(2 n+1) / 6 . \sum_{i=1}^{n} i^{3}=n^{2}(n+1)^{2} / 4$.
2. Master theorem. Consider the recurrence relation: $T(n)=a T(n / b)+f(n)$, where $a \geq 1$ and $b>1$ are constants. Case1: If $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ for some constant $\epsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$. Case2: If $n^{\log _{b} a}=\Theta(f(n))$, then $T(n)=\Theta(f(n) \log n)$. Case3: If $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some constant $\epsilon>0$ and $a f(n / b) \leq c f(n)$ for some constant $c<1$, then, $T(n)=\Theta(f(n))$.
3. Randomized algorithms. A Monte Carlo algorithm runs for a prespecified amount of time and its output is correct with high probability. By high probability we mean a probability of $\geq 1-n^{-\alpha}$, for any constant α. A Las Vegas algorithm always outputs the correct answer and its run time is a random variable. We say the run time of a Las Vegas algorithm is $\widetilde{O}(f(n))$ if the run time is $\leq \operatorname{c\alpha f}(n)$ for all $n \geq n_{0}$ with probability $\geq\left(1-n^{-\alpha}\right)$ for some constants c and n_{0}.
4. Dictionaries and Priority Queues: A dictionary supports the operations: SEARCH (for an arbitrary element), INSERT (an arbitrary element), and DELETE (an arbitrary element). A (max) priority queue supports: INSERT (an arbitrary element), SEARCH (for the maximum element), and DELETE (the maximum element).
5. Heaps and Heapsort: A (max) heap is a complete binary tree where a key is stored at each node. The key at any node will be greater than the keys of its children.
A (max) heap supports the following operations: SEARCH (for the maximum), INSERT (an arbitrary element), and DELETE (the maximum). Each operation can be completed in $O(\log n)$ time, n being the number of elements in the heap. A heap can be used to sort elements. Heapsort on n elements takes $O(n \log n)$ time.
6. A 2-3 Tree can be used to support a dictionary as well as a priority queue. Each operation of interest will take $O(\log n)$ time in the worst case.
7. Binary search on a sorted array of size n takes $O(\log n)$ time. Mergesort sorts n arbitrary keys in $O(n \log n)$ time. Quicksort takes $\Omega\left(n^{2}\right)$ time in the worst case to sort n keys. Its average run time is $O(n \log n)$.
8. We have shown that any comparison sorting algorithm will need at least $\log n!$ comparisons to sort n elements.
