
CSE 3500 Algorithms and Complexity

Fall 2016; Exam I; Help Sheet

1. Preliminaries. We say f(n) = O(g(n)) if f(n) ≤ cg(n) for all n ≥ n0 for some constants

c and n0. We say f(n) = Ω(g(n)) if and only if g(n) = O(f(n)). Also, f(n) = Θ(g(n)) if

f(n) = O(g(n)) and f(n) = Ω(g(n)). We say f(n) = o(g(n)) if limn→∞
f(n)
g(n) = 0.

A partial list of functions in increasing order is: O(1), (log n)ε, log n, (log n)1+µ, nε,

n, n1+µ, 2n
ε
, 2n, 2n

1+µ
where 0 < ε < 1 and µ > 0 are constants.

Stirling’s approximation: n! ≈ (n/e)n
√

2πn.∑n
i=1 i = n(n+ 1)/2.

∑n
i=1 i

2 = n(n+ 1)(2n+ 1)/6.
∑n
i=1 i

3 = n2(n+ 1)2/4.

2. Master theorem. Consider the recurrence relation: T (n) = aT (n/b) + f(n), where a ≥ 1

and b > 1 are constants. Case1: If f(n) = O(nlogb a−ε) for some constant ε > 0, then

T (n) = Θ(nlogb a). Case2: If nlogb a = Θ(f(n)), then T (n) = Θ(f(n) log n). Case3: If

f(n) = Ω(nlogb a+ε)for some constant ε > 0 and af(n/b) ≤ cf(n) for some constant c < 1,

then, T (n) = Θ(f(n)).

3. Randomized algorithms. A Monte Carlo algorithm runs for a prespecified amount of time

and its output is correct with high probability. By high probability we mean a probability of

≥ 1−n−α, for any constant α. A Las Vegas algorithm always outputs the correct answer and

its run time is a random variable. We say the run time of a Las Vegas algorithm is Õ(f(n))

if the run time is ≤ cαf(n) for all n ≥ n0 with probability ≥ (1− n−α) for some constants c

and n0.

4. Dictionaries and Priority Queues: A dictionary supports the operations: SEARCH (for

an arbitrary element), INSERT (an arbitrary element), and DELETE (an arbitrary element).

A (max) priority queue supports: INSERT (an arbitrary element), SEARCH (for the maxi-

mum element), and DELETE (the maximum element).

5. Heaps and Heapsort: A (max) heap is a complete binary tree where a key is stored at

each node. The key at any node will be greater than the keys of its children.

A (max) heap supports the following operations: SEARCH (for the maximum), INSERT

(an arbitrary element), and DELETE (the maximum). Each operation can be completed

in O(log n) time, n being the number of elements in the heap. A heap can be used to sort

elements. Heapsort on n elements takes O(n log n) time.

6. A 2-3 Tree can be used to support a dictionary as well as a priority queue. Each operation

of interest will take O(log n) time in the worst case.

7. Binary search on a sorted array of size n takes O(log n) time. Mergesort sorts n arbitrary

keys in O(n log n) time. Quicksort takes Ω(n2) time in the worst case to sort n keys. Its

average run time is O(n log n).

8. We have shown that any comparison sorting algorithm will need at least log n! comparisons

to sort n elements.


