
CSE 5095: Research Topics in

Big Data Analytics

2/4/2014

Notes by: Ioannis Papavasileiou

Deterministic out-of-core Selection

input: A sequence X = k1, k2, . . . , kN and an integer i, 1 ≤ i ≤ N
output: the i-th smallest element of X

We will employ deterministic sampling. Recall that the BFPRT
algorithm employs a simple form of deterministic sampling. In any
out-of-core algorithm, we typically are interested in counting the
number of I/O operations and we are not concerned with the com-
putation time.

Think of a tree where the degree is
√
M and each leaf has M

elements. First we sort each leaf and every leaf sends its keys with
ranks

√
M, 2
√
M, ...,M to its parent. We continue this process in

every node until we reach a node that has ≤M elements. This node
is the Root. The leaves are at level 0 and let the level of the root be
j.

Without loss of generality lets assume that |Rj| = M .
In the following lines we are going to describe one level of sampling.
Pick l1&l2 from Rj such that

Rank(l1, Rj) =
i|Rj |
N
− δ and Rank(l2, Rj) =

i|Rj |
N

+ δ
δ is going to be defined in the analysis.
Let x be an element of Rj whose rank in Rj is q. In this case, what
is Rank(x,R0)?

We know that |R1| = N√
M

, |R2| = N
(
√
M)2

= N
M

, ..., |Rj| = N
(
√
M)j

=

M ⇒ N = M
j+2
2 ⇒ j = 2c− 2, where c = logN

logM
.

Rank(x,Rj−1) ≥ q
√
M

Also, Rank(x,Rj−1) ≤ q
√
M + (

√
M − 1)

2
.

This is because there is an uncertainty of
√
M − 1 contributed by

every node (except one) in level (j − 1) to the rank of x.

Let U(i) be the rank of x in Ri.

U(i) ≥ U(i+ 1)
√
M ,

U(i) ≤ U(i+ 1)
√
M +M

j−i
2

√
M

Note that the number of nodes in level i is (
√
M)j−i = M

j−i
2 and

each such node contributes an uncertainty of
√
M − 1 to the rank of

x.

By repeated substitutions we have:

U(i) ≤ qM
j−i
2 + (j − i)M j−i+1

2

and so:

U(0) ≤ qM
j
2 + jM

j+1
2 = q

N

M
+ (2c− 2)

N√
M

(1)

i.e.,

Rank(x,R0) ∈ [q
N

M
, q
N

M
+ (2c− 2)

N√
M

] (2)

We can pick l1 such that Rank(l1, Rj) = i
|Rj |
N
− (2c− 2 + ε)

√
M

and l2 such that Rank(l2, Rj) = i
|Rj |
N

+ (2c− 2− ε)
√
M .

Using equations 1 and 2, Rank(l1, R0) ∈ [i− (2c− 2 + ε) N√
M
, i−

ε N√
M

] and Rank(l2, R0) ∈ [i+ (2c− 2 + ε) N√
M
, i+ (4c− 4 + ε) N√

M
].

As a result, we see that the number of input keys whose values
are in the range [l1, l2] is ≤ (6c− 6 + 2ε) N√

M
.

This is how one level of sampling works. The actual selection
algorithm uses the above sampling process as a building block.

Algorithm

To begin with all the input keys are alive; n← N ;
/* n is the number of alive keys */
repeat

do one level of sampling;
compute l1 and l2 as described above;
eliminate all the alive keys that are not in the range [l1, l2];
Adjust n and i accordingly;
if n ≤M then

quit the loop
end if

until forever
perform an appropriate selection on the alive keys and output the
correct key

ANALYSIS:

The number of alive keys reduces by a factor ofΩ(
√
M/c) = Ω

(√
M logM
logn

)
in each iteration of the Repeat loop. If N is a polynomial in M , then
the number of iterations is O(1).
In any iteration of the repeat loop the number of I/O operations is:
n
B

+ n
B
√
M

+ n
BM

+ ... =

= n
B

(1 + 1√
M

+ 1
M

+ ...) ≤ n
B

(1
1− 1√

M

) = O(n
B

)

Lemma: We can do out-of-core selection deterministically in O(N
B

)
I/O operations.

A lower bound on I/O operations required to
sort N keys

Lemma: Sorting N keys needs Ω
(

N
B

log N
B

log M
B

)
I/O operations.

Proof: Assume:

1. No new keys are generated
2. The disk is thought of as consisting of n = N

B
blocks and the

I/O’s are done only with respect to these blocks

To begin with, there are N ! permutations such that the correct an-
swer could be any one of these. The number of permutations that
can be generated in one I/O is

(
M
B

)
B!.

After one I/O the number of permutations remaining for the
adversary is reduced to N !

(M
B)B!

.

So we can see that the number of permutations remaining after
t I/O operations is N !

((M
B)B!)

t . However, when t > n, the B! term van-

ishes since there are only n I/O operations in which we can bring an
unseen block from the disk to the core memory.
⇒ number of permuations remaining after t operations is≤ N !

(M
B)

t
(B!)

N
B

we want this to be ≤ 1. ⇒ N ! <
(
M
B

)t
(B!)

N
B .

We’ll use the following (crude) approximations: log(x!) ≈ x log x
and log

(
a
b

)
≈ b log a

b
.

So, N logN ≤ t log
(
M
B

)
+ N

B
log(B!) = tB log M

B
+ N

B
B logB ⇒

N log N
B
≤ tB log M

B
⇒

t ≥ N
B

log N
B

log M
B

�

