CSE 5095: Research Topics in Big Data Analytics 2/4/2014

Notes by: Ioannis Papavasileiou

Deterministic out-of-core Selection

input: A sequence $X=k_{1}, k_{2}, \ldots, k_{N}$ and an integer $i, 1 \leq i \leq N$ output: the i-th smallest element of X

We will employ deterministic sampling. Recall that the BFPRT algorithm employs a simple form of deterministic sampling. In any out-of-core algorithm, we typically are interested in counting the number of I/O operations and we are not concerned with the computation time.

Think of a tree where the degree is \sqrt{M} and each leaf has M elements. First we sort each leaf and every leaf sends its keys with ranks $\sqrt{M}, 2 \sqrt{M}, \ldots, M$ to its parent. We continue this process in every node until we reach a node that has $\leq M$ elements. This node is the Root. The leaves are at level 0 and let the level of the root be j.

Without loss of generality lets assume that $\left|R_{j}\right|=M$.
In the following lines we are going to describe one level of sampling. Pick $l_{1} \& l_{2}$ from R_{j} such that
$\operatorname{Rank}\left(l_{1}, R_{j}\right)=\frac{i\left|R_{j}\right|}{N}-\delta$ and $\operatorname{Rank}\left(l_{2}, R_{j}\right)=\frac{i\left|R_{j}\right|}{N}+\delta$
δ is going to be defined in the analysis.
Let x be an element of R_{j} whose rank in R_{j} is q. In this case, what is $\operatorname{Rank}\left(x, R_{0}\right)$?

We know that $\left|R_{1}\right|=\frac{N}{\sqrt{M}},\left|R_{2}\right|=\frac{N}{(\sqrt{M})^{2}}=\frac{N}{M}, \ldots,\left|R_{j}\right|=\frac{N}{(\sqrt{M})^{j}}=$ $M \Rightarrow N=M^{\frac{j+2}{2}} \Rightarrow j=2 c-2$, where $c=\frac{\log N}{\log M}$.

$\operatorname{Rank}\left(x, R_{j-1}\right) \geq q \sqrt{M}$
Also, $\operatorname{Rank}\left(x, R_{j-1}\right) \leq q \sqrt{M}+(\sqrt{M}-1)^{2}$.
This is because there is an uncertainty of $\sqrt{M}-1$ contributed by every node (except one) in level $(j-1)$ to the rank of x.

Let $U(i)$ be the rank of x in R_{i}.

$=\frac{\text { level }(i+1) \text { keys } \leq x}{}$	level i

$U(i) \geq U(i+1) \sqrt{M}$, $U(i) \leq U(i+1) \sqrt{M}+M^{\frac{j-i}{2}} \sqrt{M}$
Note that the number of nodes in level i is $(\sqrt{M})^{j-i}=M^{\frac{j-i}{2}}$ and each such node contributes an uncertainty of $\sqrt{M}-1$ to the rank of x.

By repeated substitutions we have:

$$
U(i) \leq q M^{\frac{j-i}{2}}+(j-i) M^{\frac{j-i+1}{2}}
$$

and so:

$$
\begin{equation*}
U(0) \leq q M^{\frac{j}{2}}+j M^{\frac{j+1}{2}}=q \frac{N}{M}+(2 c-2) \frac{N}{\sqrt{M}} \tag{1}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\operatorname{Rank}\left(x, R_{0}\right) \in\left[q \frac{N}{M}, q \frac{N}{M}+(2 c-2) \frac{N}{\sqrt{M}}\right] \tag{2}
\end{equation*}
$$

We can pick l_{1} such that $\operatorname{Rank}\left(l_{1}, R_{j}\right)=i \frac{\left|R_{j}\right|}{N}-(2 c-2+\epsilon) \sqrt{M}$ and l_{2} such that $\operatorname{Rank}\left(l_{2}, R_{j}\right)=i \frac{\left|R_{j}\right|}{N}+(2 c-2-\epsilon) \sqrt{M}$.

Using equations 1 and $2, \operatorname{Rank}\left(l_{1}, R_{0}\right) \in\left[i-(2 c-2+\epsilon) \frac{N}{\sqrt{M}}, i-\right.$ $\left.\epsilon \frac{N}{\sqrt{M}}\right]$ and $\operatorname{Rank}\left(l_{2}, R_{0}\right) \in\left[i+(2 c-2+\epsilon) \frac{N}{\sqrt{M}}, i+(4 c-4+\epsilon) \frac{N}{\sqrt{M}}\right]$.

As a result, we see that the number of input keys whose values are in the range $\left[l_{1}, l_{2}\right]$ is $\leq(6 c-6+2 \epsilon) \frac{N}{\sqrt{M}}$.

This is how one level of sampling works. The actual selection algorithm uses the above sampling process as a building block.

Algorithm

To begin with all the input keys are alive; $n \leftarrow N$;
/* n is the number of alive keys */
repeat
do one level of sampling;
compute l_{1} and l_{2} as described above;
eliminate all the alive keys that are not in the range $\left[l_{1}, l_{2}\right]$;
Adjust n and i accordingly;
if $n \leq M$ then
quit the loop
end if
until forever
perform an appropriate selection on the alive keys and output the correct key

ANALYSIS:

The number of alive keys reduces by a factor of $\Omega(\sqrt{M} / c)=\Omega\left(\frac{\sqrt{M} \log M}{\log n}\right)$ in each iteration of the Repeat loop. If N is a polynomial in M, then the number of iterations is $O(1)$.
In any iteration of the repeat loop the number of I / O operations is:
$\frac{n}{B}+\frac{n}{B \sqrt{M}}+\frac{n}{B M}+\ldots=$
$=\frac{n}{B}\left(1+\frac{1}{\sqrt{M}}+\frac{1}{M}+\ldots\right) \leq \frac{n}{B}\left(\frac{1}{1-\frac{1}{\sqrt{M}}}\right)=O\left(\frac{n}{B}\right)$

Lemma: We can do out-of-core selection deterministically in $O\left(\frac{N}{B}\right)$ I/O operations.

A lower bound on I/O operations required to sort N keys

Lemma: Sorting N keys needs $\Omega\left(\frac{N}{B} \frac{\log \frac{N}{B}}{\log \frac{M}{B}}\right)$ I/O operations. Proof: Assume:

1. No new keys are generated
2. The disk is thought of as consisting of $n=\frac{N}{B}$ blocks and the I/O's are done only with respect to these blocks

To begin with, there are N ! permutations such that the correct answer could be any one of these. The number of permutations that can be generated in one I/O is $\binom{M}{B} B!$.

After one I/O the number of permutations remaining for the adversary is reduced to $\frac{N!}{\binom{M}{B} B!}$.

So we can see that the number of permutations remaining after $t \mathrm{I} / \mathrm{O}$ operations is $\frac{N!}{\left(\binom{M}{B} B!\right)^{t}}$. However, when $t>n$, the $B!$ term vanishes since there are only $n \mathrm{I} / \mathrm{O}$ operations in which we can bring an unseen block from the disk to the core memory.
\Rightarrow number of permuations remaining after t operations is $\leq \frac{N!}{\binom{M}{B}^{t}(B!)^{\frac{N}{B}}}$ we want this to be $\leq 1 . \Rightarrow N!<\binom{M}{B}^{t}(B!)^{\frac{N}{B}}$.

We'll use the following (crude) approximations: $\log (x!) \approx x \log x$ and $\log \binom{a}{b} \approx b \log \frac{a}{b}$.

So, $N \log N \leq t \log \binom{M}{B}+\frac{N}{B} \log (B!)=t B \log \frac{M}{B}+\frac{N}{B} B \log B \Rightarrow$ $N \log \frac{N}{B} \leq t B \log \frac{M}{B} \Rightarrow$
$t \geq \frac{N}{B} \log \frac{N}{\log } \frac{M}{B}$

