CSE 5095: Research Topics in
Big Data Analytics
2/4/2014

Notes by: Ioannis Papavasileiou

Deterministic out-of-core Selection

input: A sequence X = ki, ks,...,ky and an integer 7,1 <i < N
output: the i-th smallest element of X

We will employ deterministic sampling. Recall that the BFPRT
algorithm employs a simple form of deterministic sampling. In any
out-of-core algorithm, we typically are interested in counting the
number of I/O operations and we are not concerned with the com-
putation time.

R.
J Root has < M elements

™

Think of a tree where the degree is v/M and each leaf has M
elements. First we sort each leaf and every leaf sends its keys with
ranks v/M,2v/M, ..., M to its parent. We continue this process in
every node until we reach a node that has < M elements. This node
is the Root. The leaves are at level 0 and let the level of the root be

VE

Without loss of generality lets assume that |R;| = M.
In the following lines we are going to describe one level of sampling.

Pick [1&ly from R; such that
Rank(ly, R;) = Y8 — 5 and Rank(ly, R;) = 18 + 5

N N
0 is going to be defined in the analysis.
Let z be an element of R; whose rank in R; is ¢. In this case, what

is Rank(z, Ry)?

_ N __ N _ N _ _N_ _
We know thi“t 1Bl = 75 1Bl = e = a0 Bl = 3 =
M:>N:MJT:>j:20—2,wherec:11§§]\]\;.

R; Rank of xis qin R;

VM elements in
k=

‘ S ‘ P

Rank(z,R;_1) > qv M

Also, Rank(z, R;_1) < gV M + (VM — 1)".
This is because there is an uncertainty of vV M — 1 contributed by
every node (except one) in level (j — 1) to the rank of x.

Let U(i) be the rank of z in R;.

UG+ Dkeys <x level (i + 1)

U(ikeys < x level i

U(i) > Ui + 1)VM,

U() <UG+1)VM+ Mz VM

Note that the number of nodes in level i is (v M)~ = Mz and
each such node contributes an uncertainty of v/ M — 1 to the rank of
x.

By repeated substitutions we have:

. J—itl

Ui) < gM™'s + (j — i) M™
and so:

|
=|=
=

ie.,

N
(2¢ — 2)\/_M] (2)

We can pick {4 such that Rank(ly, R;) = Bl (2c =2+ €e)VM

N

and I such that Rank(ls, R;) = Bl (2¢ — 2 —e)V M.

N

N N
Rank(z, Ry) € [QM’QM +

Using equations 1 and 2, Rank(ly, Ry) € [i — (2¢ — 2+ e)\/%,i —

e\/%] and Rank(ly, Ro) € [i + (2¢ — 2 + e)\/%,i + (de—4+ e)\/%]

As a result, we see that the number of input keys whose values
are in the range [l1,] is < (6¢ — 6 + 26)\/%.

This is how one level of sampling works. The actual selection
algorithm uses the above sampling process as a building block.

Algorithm

To begin with all the input keys are alive; n < N;
/* n is the number of alive keys */
repeat
do one level of sampling;
compute [; and [y as described above;
eliminate all the alive keys that are not in the range [l l5];
Adjust n and 7 accordingly;
if n < M then
quit the loop
end if
until forever
perform an appropriate selection on the alive keys and output the
correct key

ANALYSIS:
The number of alive keys reduces by a factor of 2(v/ M /c) = {2 (\/M log M)

logn
in each iteration of the Repeat loop. If IV is a polynomial in M, then
the number of iterations is O(1).
In any iteration of the repeat loop the number of I/O operations is:
% -+ #M -+ ﬁ 4+ ... =

n 1 1 n 1 _ n
=50+ m+yt+-)< E(l—ﬁ) =0(3)

Lemma: We can do out-of-core selection deterministically in O(%)
I/O operations.

A lower bound on I/0O operations required to
sort N keys

log

[z

Lemma: Sorting N keys needs (2 (% ,) I/O operations.

=

log

ol

Proof: Assume:

1. No new keys are generated

2. The disk is thought of as consisting of n = % blocks and the

wl=

I/O’s are done only with respect to these blocks
Block size
\
|BIBl...ooovovoooeevicvccee B | Disk
12 N Block #
| M keys ‘ Memory

To begin with, there are N! permutations such that the correct an-
swer could be any one of these. The number of permutations that
can be generated in one I/0 is (1) BL.

After one I/O the number of permutations remaining for the
adversary is reduced to (%)!B'.
N B!

So we can see that the number of permutations remaining after

t 1/O operations is —~—. However, when ¢ > n, the B! term van-

((5)5Y)

ishes since there are only n I/O operations in which we can bring an
unseen block from the disk to the core memory.

. |
= number of permuations remaining after ¢ operations is < N

(g)t(B!)

Sk

N
B

we want this to be < 1. = NIl < (Ag)t(B!) .

We'll use the following (crude) approximations: log(z!) ~ xlog x
and log (‘;) ~ blog ¢.

So, Nlog N < tlog (]‘g) + Zlog(B!) = tBlog 2 + X Blog B =
Nlog% < tBlog% =

£ > Nlog%

- Elog%

