CSE 5095-Big Data Analytics - Notes from February $27^{\text {th }}$

Recall that the (ℓ, m)-merge sort (LMM) is based on the (ℓ, m)-merge algorithm. If $X_{1}, X_{2}, \ldots, X_{\ell}$ are sorted sequences, then we can merge them using the (ℓ, m)-merge algorithm. The idea is to unshuffle each sorted sequence into m parts, recursively merge similar parts, shuffle the resultant sorted sequences, and finally perform some local sorting. Specifically, X_{i} is partitioned into $X_{i}^{1}, X_{i}^{2}, \ldots, X_{i}^{m}$, for $1 \leq i \leq \ell . X_{1}^{j}, X_{2}^{j}, \ldots, X_{m}^{j}$ are recursively merged to get Y_{j}, for $1 \leq j \leq m$. We then shuffle $Y_{1}, Y_{2}, \ldots, Y_{m}$ to get the sequence Z. As we have shown before, the length of the dirty sequence in Z is no more than ℓm. We perform some local sorting in Z to clean up the dirty sequence.

The first two steps of this algorithm are shown in Figure 1.

Figure 1: The first two steps of the (ℓ, m)-merge algorithm

Figure 2: Cleaning up the dirty sequence
There are many ways to clean up the sequence Z. Partition the sequence Z into Z_{1}, Z_{2}, \ldots where $\left|Z_{i}\right|=\ell m$ for any i. Call each of these Z_{i} 's a block.
$=>$ the dirty sequence is within two successive Z_{i} 's. Note that even though the length of the dirty sequence is no more than ℓm, we cannot say, for example, that the dirty sequence will be confined to a single block. One way of cleaning Z is to merge and sort Z_{1} and $Z_{2} ; Z_{3}$ and Z_{4}; etc. Followed by this we merge and sort Z_{2} and $Z_{3} ; Z_{4}$ and Z_{5}; etc.

Another way is to clean up Z is to sort and merge Z_{1} and $Z_{2} ; Z_{2}$ and $Z_{3} ; Z_{3}$ and Z_{4}; etc. See Figure 2 .
An Example. Consider the problem of sorting N keys where $N=M \sqrt{M}$, and $B=D=\sqrt{M}$.
We can sort these keys using LMM. The idea is to form runs of length M each in one pass through the data. Now we have to merge \sqrt{M} sorted sequences of length M each. We can merge these using the (ℓ, m)-merge
algorithm with $\ell=m=\sqrt{M}$. Let these runs be $X_{1}, X_{2}, \ldots, X_{\sqrt{M}}$. We first unshuffle each X_{i} into \sqrt{M} parts, $1 \leq i \leq \sqrt{M}$. Specifically, X_{i} is unshuffled into $X_{i}^{1}, X_{i}^{2}, \ldots, X_{i}^{\sqrt{M}}$, for $1 \leq i \leq \sqrt{M}$. Note that the step of forming runs and unshuffling can be done together in one pass through the data. We then recursively merge $X_{1}^{j}, X_{2}^{j}, \ldots, X_{\sqrt{M}}^{j}$ to get Y_{j}, for $1 \leq j \leq \sqrt{M}$. This merging takes one pass through the data. Finally, we have to shuffle $Y_{1}, Y_{2}, \ldots, Y_{\sqrt{M}}$ to get Z and clean up the dirty sequence in Z. These two steps can be done together in one pass through the data if we have a core memory of size $2 M$. The idea is to have Z_{i} and Z_{i+1} in the core memory at any point in time (for some value of i).

Thus, the total number of passes needed for this example is 3 .

General Case:

Now we consider the general case of sorting N keys (for any value of N). There are two cases to consider.
Case 1:
$\frac{M}{B} \geq \sqrt{M}$

Case 2:
$\frac{M<\sqrt{M}}{B}$
Let $T(i, j)$ stand for the number of passes needed to merge i sequences of length j each. To sort N keys, we will first form runs of length M each in one pass through the data. Followed by this, we will merge these $\frac{N}{M}$ sorted runs. Thus a central question is:

$$
T\left(\frac{N}{M}, M\right)=?
$$

Exercise:

1. Show that $T(\sqrt{M}, M)=3$ when $\frac{M}{B} \geq \sqrt{M}$. Hint: Use $\ell=m=\sqrt{M}$.
2. Show that $T\left(\frac{M}{B}, M\right)=3$ if $\operatorname{fracMB}<\sqrt{M}$. Hint: Use $\ell=m=\frac{M}{B}$.

The generic sorting algorithm will be described in two cases.
Case $1: \frac{M}{B} \geq \sqrt{M}$.

We use (ℓ, m) merge algorithm with $\ell=m=\sqrt{M}$. Let $K=\sqrt{M}$ and let $\frac{N}{M}=K^{2 c}=>\frac{N}{M}=M^{c}=>$ $c \log M=\log \left(\frac{N}{M}\right)=>c=\frac{\log \left(\frac{N}{M}\right)}{\log (M)}$

What is the value of $T\left(K^{2 c}, M\right)$?

The claim is $T\left(K^{2 c}, M\right)=T(K, M)+T(K, K M)+T\left(K, K^{2} M\right)+\cdots+T\left(K, K^{2 c-1} M\right)$. This claim follows from the fact that we can merge $K^{2 c}$ sequences of length M each using a K-way merge strategy as shown in Figure 3 and Figure 4.

Now consider the problem of merging K sequences of length $K^{i} M$ each, for any i. This merging can be done using the (ℓ, m)-merge algorithm with $\ell=m=K$. Unshuffling will take one pass. Recursive mergings will take

Figure 3: K-way merge

Figure 4: K-way merge tree
$T\left(K, K^{i-1} M\right)$ passes. Shuffling and cleaning the dirty sequence can be done in one more pass. (See Figure 5). Thus it follows that $T\left(K, K^{i} M\right)=T\left(K, K^{i-1} M\right)+2$. This means that $T\left(K, K^{i} M\right)=2 i+T(K, M)=2 i+3$.

As a result, it follows that $T\left(K^{2 c}, M\right)=\sum_{i=0}^{2 c-1}(2 i+3)=4 c^{2}+4 c$.
Case 2: $\frac{M}{B}<\sqrt{M}$.
We use (ℓ, m)-merge algorithm with $\ell=m=\frac{M}{B}$. Let $Q=\frac{M}{B}$. Let $Q^{d}=\frac{N}{M}=>d=\frac{\log \left(\frac{N}{M}\right)}{\log \left(\frac{M}{B}\right)}$.
Along the same lines as in case 1 , we see that $T\left(Q^{d}, M\right)=T(Q, M)+T(Q, Q M)+\cdots+T\left(Q, Q^{d-1} M\right)$.

We can also see that $T\left(Q, Q^{i} M\right)=2+T\left(Q, Q^{i-1} M\right)=2 i+T(Q, M)=2 i+3$

Figure 5: (K, K)-merge algorithm
$=>T\left(Q^{d}, M\right)=\sum_{i=0}^{d-1}(2 i+3)=d^{2}+2 d$.

Putting cases 1 and 2 together we get the following

Theorem :

We can sort N elements using D disks in no more than $\left[\frac{\log \left(\frac{N}{M}\right)}{\log \left(\min \left\{\sqrt{M}, \frac{M}{B}\right\}\right)}+1\right]^{2}$ number of passes through the data.

Example:

If $N=M^{4}$ and $B=M^{\frac{2}{3}}$, the number of passes taken by the above algorithm is $\left(\frac{3 \log M}{\frac{1}{3} \log M}+1\right)^{2}=100$.
Rajasekaran and Sen(2004) have presented an asymptotically optimal Las Vegas algorithm to sort N given keys. Several other authors have given such an optimal algorithm as well. The algorithm of Rajasekaran and Sen is much simpler than that of the others.

IDEA :

Apply a random permutation to the input. Form runs of length M each. Apply an R-way merge with $R=\Theta\left(\frac{M}{B}\right)$. A random permutation ensures that the leading blocks of the runs that are merged at any given time, or nearly in distinct disks. See Figure 6.

Random Permutations:

Let $X=k_{1}, k_{2}, \ldots, k_{N}$. To permute X, each key is assigned a random label and then the keys are sorted with respect to their labels.

Fact : We can sort N integers in the range $[1, R]$ in $O\left(\frac{\log \left(\frac{N}{M}\right)}{\log \left(\frac{M}{B}\right)}\right)$ passes through the data if the value of each key is uniformly distributed in the range $[1, R]$, where R is any integer.

Figure 6: Sorting after random permutation

Algorithm: Form runs of length M each. Merge them using R-way merge with $R=\frac{M}{B}$. Assume that we have $\overline{C M}$ memory where C is a constant (greater than one). Whenever $B D$ keys are ready in the merged sequence, write them in the disks. When B keys have been consumed from any run, do a parallel I/O.

Analysis:At any time we have nearly C blocks of each run in memory. Each key that goes into the output is equally likely to have come out of any of the runs. When $B D$ keys are output to the disks, the expected number of these keys that have come out of any run Q_{i} is B (for any i).
$=>$ Using Chernoff bounds, this number is $\in[(1 \pm \epsilon) B]$ with high probability (ϵ being a constant fraction).
$=>$ the number of passes needed is $\tilde{O}\left(\frac{\log \left(\frac{N}{M}\right)}{\log \left(\frac{M}{B}\right)}\right)$.
To perform a random permutation:
Assign a random label to each input key in the range $\left[1, N^{1+\beta}\right]$ for some constant $\beta<1$. Sort the sequence based on the labels. Scan through the sorted sequence to permute equal keys.

