CSE 5095: Research Topics In Big Data Analytics
Professor: Sanguthevar Rajasekaran
Notes Taken By: William Reynolds
Lecture Date: February 25th, 2014

n/xf

Figure 1: Sorting a mesh with the s2-way merge sort

In the last lecture we discussed the odd-even merge algorithm and saw how that algorithm can be used to sort n given
elements. Given n elements, the idea is to partition the input into two halves, recursively sort each half, and merge the sorted
halves using the odd-even merge algorithm. An extension of this algorithm (called the s?-way merge sort) was proposed by
(Thompson and Kung 1977) to sort a mesh. The idea was to partition the mesh into sub meshes of size % x %, sort each sub
mesh, and merge the s? sorted sub meshes using the odd-even merge algorithm.

In Figure 1, the sorted subsequences in the mesh are shown as X1, Xo,..., X 2. Each of these subsequences is partitioned
into its odd and even parts; all the odd parts are recursively merged to get Y and all the even parts are merged recursively
to get Z; Y and Z are shuffled to get the sequence @; In the shuffled sequence @Q we can show that the length of the dirty
sequence is no more than 2s?; we clean @ by performing some local sorting.

The algorithm (¢, m)-merge sorting (LMM) is an extension of the above algorithms due to (Rajasekaran 1999).

X1, X2
3 /A I\
1 Xl XQ XQ XJZ .(,”

Figure 2: s?-way merge sort is a special case of the LMM algorithm

(¢, m) Merge Sort (LMM)

Input : X = ki, ko, ... |, kn,
Output : Sorted X
Algorithm :

@ Partition X into ¢ equal sized parts: X, Xo,..., and X,.
@ for1 <i</{do

Recursively sort X; to get Y;
@ Merge Y1, Yo, ... , Y, using Algorithm (¢, m) Merge

Algorithm (¢, m) Merge

Input : Sorted sequences X1, Xa,..., Xy
Output : Merge of X7, Xo,..., Xy
Algorithm :

(1) for1<i<t¢do
Unshuffle X; into m parts : X}, X2,..., X"
if X;=al,27,... 27

i »

1_ .1 1+m _1+2m
then X =x;, 2,7, x; o
X? = a2 g2tm g2 t2m

i P

m _ ,.m .2m .3m
X" =xxim™ ™,

(2)for 1 <i<mdo
Recursively merge X4, X3, ... ,X} to get Vi =yl s, ...
(3) Shuffle Y3, Ya, ..., Yy,

Let}/;:yz»17yz-2,...,yfr/m where 1 <7 <m

The shuffled sequence Z = Y1, Y3, U3, ooy Uy U2 USs Us ooy Yny vy U1 LY ey Y

Claim : The length of the dirty sequence is no more than ¢m
Let Z = 71,75, 73, ...
for each i where |Z;| = {m

Sort and Merge Z1 & Zo; Z3 & Zy;- -

@ Sort and Merge Z5 & Z3; 74 & Zs;- - -
,'i,- i +.7', v 3

Z1, 2, 23,24, 25, 7, ...,
G A T Gl

Figure 3: Step 4a (Top Arrows) And Step 4b (Bottom Arrows)

Now we are done!

Sz ® @ b
Xi
2 Y
X1 f—*{""FXrl ’
XTF

Xzé g ¥z

shuffle ﬁ

clean up the dirty sequence

Xi‘ . Ym

Figure 4: A demonstration of the LMM Algorithm

Proof of Claim :
The minimum number of zeros contributed by any X; to any Y; = |7 | , where n; is the number of zeros in X; , 1 <4 </

The maximum number of zeros contributed by any X; to any Y; = f%} ,where 1 <i</fand 1<j<m

— The difference between the number of zeros in Y; & Y, is < £. As a corollary, it follows that the length of the dirty
sequence is no more than ¢m. See Figure 5 for a worst case example. In this example, Y7 has ¢ more zeros than the others.
The other sequences have all ones in these £ columns.

| | \ |
> | ! — |

Dirty
Sequence

Zeros Ones

Figure 5: Sequence Z could have a dirty sequence

y1 — 00...00000...001...1

Yo — 00...0TTIL.1]L...1

Vo — 00 OTIIL_1)1...1
/

01 L A0 Ol...lJ
R J— ,J—-.‘_Y_J

— b

fm—-1} (m-—1) [m—1)

Dirty Sequence

Figure 6: An example input for which the dirty sequence is the longest

An Example : We'll illustrate LMM in sorting M+/ M elements.
N=MVvM B=D=vM

Sort N elements

Using LMM we can sort in 3 passes
@ Form runs of length M each; There are v/ M runs that we have to merge.
Let these runs be X1, Xo,..., X 37

@ Unshuffle each run into v M parts

@ Recursively Merge X{,X%, ...,Xf'/ﬁ to get Yj, for 1 <5 < VM
(4) Shuffle V1, Ya, ..., Y 57

@ Clean up the dirty sequence

Recursive Merge

shuffle W

clean up the dirty sequence

VI Recursive Merge

Figure 7: LMM in action for the example sorting problem

Analysis :
e Note that we have used LMM with £ = m = v/ M. Steps 1 and 2 take 1 pass together.

i []x3 || x}
- |22]] x3
xi

Figure 8: An optimal way to stripe the data after step 2. This striping enables us to perform step 3 in one pass.

e Step 3 takes 1 pass

Assume that we have a memory of size 2M. In this case we can clean up the dirty sequence while we are shuffling. Let
Z be partitioned into blocks of size M each: Z = Zy,Z, ..., where each block Z; is of size fm = M. Note that the dirty
sequence can only span two successive blocks. Therefore, one way of cleaning the sequence Z is to: sort and merge Z; and
Zo; Zo and Zs; etc. If we have 2M memory, we can do this cleaning as well as Step 4 in a total of one pass.

e As a result, Steps 4 and 5 take 1 pass.
.. The Total Number of Passes = 3

Note: (Chaudhry and Cormen 2002) have shown that when B = D = /M, we can sort M7\2/M keys in 3 passes through the
data. They have implemented the column sort algorithm of (Leighton 1985). It turns out that the column sort algorithm is
indeed a special case of the LMM algorithm. Clearly, odd-even merge sort and the s2-way merge sort are also special cases
of LMM.

Note: When we analyze the I/O complexity of out-of-core algorithms we normally compute only the read complexity.
Typically, the write complexity will be similar.

