

Figure 1: Sorting a mesh with the s^{2}-way merge sort

In the last lecture we discussed the odd-even merge algorithm and saw how that algorithm can be used to sort n given elements. Given n elements, the idea is to partition the input into two halves, recursively sort each half, and merge the sorted halves using the odd-even merge algorithm. An extension of this algorithm (called the s^{2}-way merge sort) was proposed by (Thompson and Kung 1977) to sort a mesh. The idea was to partition the mesh into sub meshes of size $\frac{n}{s} \times \frac{n}{s}$, sort each sub mesh, and merge the s^{2} sorted sub meshes using the odd-even merge algorithm.

In Figure 1, the sorted subsequences in the mesh are shown as $X_{1}, X_{2}, \ldots, X_{s^{2}}$. Each of these subsequences is partitioned into its odd and even parts; all the odd parts are recursively merged to get Y and all the even parts are merged recursively to get $Z ; Y$ and Z are shuffled to get the sequence Q; In the shuffled sequence Q we can show that the length of the dirty sequence is no more than $2 s^{2}$; we clean Q by performing some local sorting.

The algorithm (ℓ, m)-merge sorting (LMM) is an extension of the above algorithms due to (Rajasekaran 1999).

Figure 2: s^{2}-way merge sort is a special case of the LMM algorithm

$$
(\ell, m) \text { Merge Sort (LMM) }
$$

Input : $X=k_{1}, k_{2}, \ldots, k_{n}$
Output : Sorted X

Algorithm :

(1) Partition X into ℓ equal sized parts: X_{1}, X_{2}, \ldots, and X_{ℓ}.
(2) for $1 \leq i \leq \ell$ do

Recursively sort X_{i} to get Y_{i}
(3) Merge $Y_{1}, Y_{2}, \ldots, Y_{\ell}$ using Algorithm (ℓ, m) Merge

Input: Sorted sequences $X_{1}, X_{2}, \ldots, X_{\ell}$
Output : Merge of $X_{1}, X_{2}, \ldots, X_{\ell}$

Algorithm :

(1) for $1 \leq i \leq \ell$ do

Unshuffle X_{i} into m parts : $X_{i}^{1}, X_{i}^{2}, \ldots, X_{i}^{m}$
if $X_{i}=x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{r}$
then $X_{i}^{1}=x_{i}^{1}, x_{i}^{1+m}, x_{i}^{1+2 m}, \cdots$
$X_{i}^{2}=x_{i}^{2}, x_{i}^{2+m}, x_{i}^{2+2 m}, \ldots$

$$
X_{i}^{m}=x_{i}^{m}, x_{i}^{2 m}, x_{i}^{3 m}, \ldots
$$

(2) for $1 \leq i \leq m$ do

Recursively merge $X_{1}^{i}, X_{2}^{i}, \ldots, X_{\ell}^{i}$ to get $Y_{i}=y_{1}^{i}, y_{2}^{i}, \ldots$
(3) Shuffle $Y_{1}, Y_{2}, \ldots, Y_{m}$

Let $Y_{i}=y_{i}^{1}, y_{i}^{2}, \ldots, y_{i}^{\ell r / m}$ where $1 \leq i \leq m$
The shuffled sequence $Z=y_{1}^{1}, y_{2}^{1}, y_{3}^{1}, \ldots, y_{m}^{1}, y_{1}^{2}, y_{2}^{2}, y_{3}^{2}, \ldots, y_{m}^{2}, \ldots, \ldots, y_{1}^{\ell r / m}, y_{2}^{\ell r / m}, \ldots, y_{m}^{\ell r / m}$
Claim : The length of the dirty sequence is no more than ℓm
Let $Z=Z_{1}, Z_{2}, Z_{3}, \ldots$
for each i where $\left|Z_{i}\right|=\ell m$
(4a) Sort and Merge $Z_{1} \& Z_{2} ; Z_{3} \& Z_{4} ; \cdots$
(4b) Sort and Merge $Z_{2} \& Z_{3} ; Z_{4} \& Z_{5} ; \cdots$

$$
Z_{1}, Z_{2}, Z_{3}, Z_{4}, Z_{5}, Z_{6}, \ldots,
$$

Figure 3: Step 4a (Top Arrows) And Step 4b (Bottom Arrows)

Now we are done!

Figure 4: A demonstration of the LMM Algorithm

Proof of Claim :

The minimum number of zeros contributed by any X_{i} to any $Y_{j}=\left\lfloor\frac{n_{i}}{m}\right\rfloor$, where n_{i} is the number of zeros in $X_{i}, 1 \leq i \leq \ell$ The maximum number of zeros contributed by any X_{i} to any $Y_{j}=\left\lceil\frac{n_{i}}{m}\right\rceil$, where $1 \leq i \leq \ell$ and $1 \leq j \leq m$
\Longrightarrow The difference between the number of zeros in $Y_{1} \& Y_{m}$ is $\leq \ell$. As a corollary, it follows that the length of the dirty sequence is no more than ℓm. See Figure 5 for a worst case example. In this example, Y_{1} has ℓ more zeros than the others. The other sequences have all ones in these ℓ columns.

Figure 5: Sequence Z could have a dirty sequence

Dirty Sequence
Figure 6: An example input for which the dirty sequence is the longest
An Example : We'll illustrate LMM in sorting $M \sqrt{M}$ elements.
$N=M \sqrt{M} B=D=\sqrt{M}$
Sort N elements
Using LMM we can sort in 3 passes
(1) Form runs of length M each; There are \sqrt{M} runs that we have to merge.

Let these runs be $X_{1}, X_{2}, \ldots, X_{\sqrt{M}}$
(2) Unshuffle each run into \sqrt{M} parts
(3) Recursively Merge $X_{1}^{j}, X_{2}^{j}, \ldots, X_{\sqrt{M}}^{j}$ to get Y_{j}, for $1 \leq j \leq \sqrt{M}$
(4) Shuffle $Y_{1}, Y_{2}, \ldots, Y_{\sqrt{M}}$
(5) Clean up the dirty sequence

Figure 7: LMM in action for the example sorting problem

Analysis :

- Note that we have used LMM with $\ell=m=\sqrt{M}$. Steps 1 and 2 take 1 pass together.

X_{1}^{1}	X_{2}^{1}	X_{3}^{1}		
\cdot	X_{1}^{2}	X_{2}^{2}	\ldots	
\cdot	\cdot	X_{1}^{3}		
\cdot	\cdot			

Figure 8: An optimal way to stripe the data after step 2. This striping enables us to perform step 3 in one pass.

- Step 3 takes 1 pass

Assume that we have a memory of size $2 M$. In this case we can clean up the dirty sequence while we are shuffling. Let Z be partitioned into blocks of size M each: $Z=Z_{1}, Z_{2}, \ldots$, where each block Z_{i} is of size $\ell m=M$. Note that the dirty sequence can only span two successive blocks. Therefore, one way of cleaning the sequence Z is to: sort and merge Z_{1} and $Z_{2} ; Z_{2}$ and Z_{3}; etc. If we have $2 M$ memory, we can do this cleaning as well as Step 4 in a total of one pass.

- As a result, Steps 4 and 5 take 1 pass.
\therefore The Total Number of Passes $=3$

Note: (Chaudhry and Cormen 2002) have shown that when $B=D=\sqrt{M}$, we can sort $\frac{M \sqrt{M}}{2}$ keys in 3 passes through the data. They have implemented the column sort algorithm of (Leighton 1985). It turns out that the column sort algorithm is indeed a special case of the LMM algorithm. Clearly, odd-even merge sort and the s^{2}-way merge sort are also special cases of LMM.

Note: When we analyze the I/O complexity of out-of-core algorithms we normally compute only the read complexity. Typically, the write complexity will be similar.

