

Figure 1: Sorting a mesh with the s^2 -way merge sort

In the last lecture we discussed the odd-even merge algorithm and saw how that algorithm can be used to sort n given elements. Given n elements, the idea is to partition the input into two halves, recursively sort each half, and merge the sorted halves using the odd-even merge algorithm. An extension of this algorithm (called the s^2 -way merge sort) was proposed by (Thompson and Kung 1977) to sort a mesh. The idea was to partition the mesh into sub meshes of size $\frac{n}{s} \times \frac{n}{s}$, sort each sub mesh, and merge the s^2 sorted sub meshes using the odd-even merge algorithm.

In Figure 1, the sorted subsequences in the mesh are shown as $X_1, X_2, \ldots, X_{s^2}$. Each of these subsequences is partitioned into its odd and even parts; all the odd parts are recursively merged to get Y and all the even parts are merged recursively to get Z; Y and Z are shuffled to get the sequence Q; In the shuffled sequence Q we can show that the length of the dirty sequence is no more than $2s^2$; we clean Q by performing some local sorting.

The algorithm (ℓ, m) -merge sorting (LMM) is an extension of the above algorithms due to (Rajasekaran 1999).

Figure 2: s^2 -way merge sort is a special case of the LMM algorithm

 (ℓ, m) Merge Sort (LMM)

Input : $X = k_1, k_2, \dots, k_n$

Output : Sorted X

Algorithm :

- (1) Partition X into ℓ equal sized parts: X_1, X_2, \ldots , and X_{ℓ} .
- (2) for $1 \le i \le \ell$ do

Recursively sort X_i to get Y_i

(3) Merge Y_1, Y_2, \ldots, Y_ℓ using Algorithm (ℓ, m) Merge

Input : Sorted sequences X_1, X_2, \ldots, X_ℓ

Output : Merge of X_1, X_2, \ldots, X_ℓ

${\bf Algorithm}:$

(1) for
$$1 \le i \le \ell$$
 do
Unshuffle X_i into m parts : $X_i^1, X_i^2, \dots, X_i^m$
if $X_i = x_i^1, x_i^2, \dots, x_i^r$
then $X_i^1 = x_i^1, x_i^{1+m}, x_i^{1+2m}, \dots$
 $X_i^2 = x_i^2, x_i^{2+m}, x_i^{2+2m}, \dots$
 \vdots
 $X_i^m = x_i^m, x_i^{2m}, x_i^{3m}, \dots$
(2) for $1 \le i \le m$ do
Recursively merge $X_1^i, X_2^i, \dots, X_\ell^i$ to get $Y_i = y_1^i, y_2^i, \dots$
(3) Shuffle Y_1, Y_2, \dots, Y_m
Let $Y_i = y_i^1, y_i^2, \dots, y_i^{\ell r/m}$ where $1 \le i \le m$
The shuffled sequence $Z = y_1^1, y_2^1, y_3^1, \dots, y_m^1, y_1^2, y_2^2, y_3^2, \dots, y_m^{\ell r/m}, y_1^{\ell r/m}, y_2^{\ell r/m}, \dots, y_m^{\ell r/m}$
Claim : The length of the dirty sequence is no more than ℓm
Let $Z = Z_1, Z_2, Z_3, \dots$
for each i where $|Z_i| = \ell m$

5	5	2	5	2	
Z_1, Z	2. Z3	Z_4 .	Z_5	Z_6	
1)	1	1	1	1

Figure 3: Step 4a (Top Arrows) And Step 4b (Bottom Arrows)

Now we are done!

Figure 4: A demonstration of the LMM Algorithm

Proof of Claim :

The minimum number of zeros contributed by any X_i to any $Y_j = \lfloor \frac{n_i}{m} \rfloor$, where n_i is the number of zeros in X_i , $1 \le i \le \ell$

The maximum number of zeros contributed by any X_i to any $Y_j = \lceil \frac{n_i}{m} \rceil$, where $1 \le i \le \ell$ and $1 \le j \le m$

 \implies The difference between the number of zeros in $Y_1 \& Y_m$ is $\leq \ell$. As a corollary, it follows that the length of the dirty sequence is no more than ℓm . See Figure 5 for a worst case example. In this example, Y_1 has ℓ more zeros than the others. The other sequences have all ones in these ℓ columns.

Figure 5: Sequence Z could have a dirty sequence

Dirty Sequence

An Example : We'll illustrate LMM in sorting $M\sqrt{M}$ elements.

 $N = M\sqrt{M} B = D = \sqrt{M}$

Sort N elements

Using LMM we can sort in 3 passes

(1) Form runs of length M each; There are \sqrt{M} runs that we have to merge. Let these runs be $X_1, X_2, \ldots, X_{\sqrt{M}}$

(2) Unshuffle each run into \sqrt{M} parts

(3) Recursively Merge $X_1^j, X_2^j, ..., X_{\sqrt{M}}^j$ to get Y_j , for $1 \le j \le \sqrt{M}$

(4) Shuffle $Y_1, Y_2, \ldots, Y_{\sqrt{M}}$

(5) Clean up the dirty sequence

Figure 7: LMM in action for the example sorting problem

Analysis :

• Note that we have used LMM with $\ell = m = \sqrt{M}$. Steps 1 and 2 take 1 pass together.

X_1^1	X_2^1	X_3^1		
•	X_1^2	X_2^2		
·		X_1^3		
•				

Figure 8: An optimal way to stripe the data after step 2. This striping enables us to perform step 3 in one pass.

• Step 3 takes 1 pass

Assume that we have a memory of size 2M. In this case we can clean up the dirty sequence while we are shuffling. Let Z be partitioned into blocks of size M each: $Z = Z_1, Z_2, \ldots$, where each block Z_i is of size $\ell m = M$. Note that the dirty sequence can only span two successive blocks. Therefore, one way of cleaning the sequence Z is to: sort and merge Z_1 and Z_2 ; Z_2 and Z_3 ; etc. If we have 2M memory, we can do this cleaning as well as Step 4 in a total of one pass.

- As a result, Steps 4 and 5 take 1 pass.
- : The Total Number of Passes = 3

Note: (Chaudhry and Cormen 2002) have shown that when $B = D = \sqrt{M}$, we can sort $\frac{M\sqrt{M}}{2}$ keys in 3 passes through the data. They have implemented the column sort algorithm of (Leighton 1985). It turns out that the column sort algorithm is indeed a special case of the LMM algorithm. Clearly, odd-even merge sort and the s^2 -way merge sort are also special cases of LMM.

Note: When we analyze the I/O complexity of out-of-core algorithms we normally compute only the read complexity. Typically, the write complexity will be similar.