
CSE 5095: Research Topics In Big Data Analytics
Professor: Sanguthevar Rajasekaran
Notes Taken By: William Reynolds
Lecture Date: February 25th, 2014

Figure 1: Sorting a mesh with the s2-way merge sort

In the last lecture we discussed the odd-even merge algorithm and saw how that algorithm can be used to sort n given
elements. Given n elements, the idea is to partition the input into two halves, recursively sort each half, and merge the sorted
halves using the odd-even merge algorithm. An extension of this algorithm (called the s2-way merge sort) was proposed by
(Thompson and Kung 1977) to sort a mesh. The idea was to partition the mesh into sub meshes of size n

s ×
n
s , sort each sub

mesh, and merge the s2 sorted sub meshes using the odd-even merge algorithm.
In Figure 1, the sorted subsequences in the mesh are shown as X1, X2, . . . , Xs2 . Each of these subsequences is partitioned

into its odd and even parts; all the odd parts are recursively merged to get Y and all the even parts are merged recursively
to get Z; Y and Z are shuffled to get the sequence Q; In the shuffled sequence Q we can show that the length of the dirty
sequence is no more than 2s2; we clean Q by performing some local sorting.

The algorithm (`,m)-merge sorting (LMM) is an extension of the above algorithms due to (Rajasekaran 1999).

Figure 2: s2-way merge sort is a special case of the LMM algorithm

(`, m) Merge Sort (LMM)

Input : X = k1, k2, ... , kn

Output : Sorted X

Algorithm :

1 Partition X into ` equal sized parts: X1, X2, . . . , and X`.

2 for 1 ≤ i ≤ ` do
Recursively sort Xi to get Yi

3 Merge Y1, Y2, ... , Y` using Algorithm (`, m) Merge

1

Algorithm (`, m) Merge

Input : Sorted sequences X1, X2, . . . , X`

Output : Merge of X1, X2, . . . , X`

Algorithm :

1 for 1 ≤ i ≤ ` do

Unshuffle Xi into m parts : X1
i , X

2
i , . . . , X

m
i

if Xi = x1
i , x

2
i , . . . , x

r
i

then X1
i = x1

i , x
1+m
i , x1+2m

i , · · ·
X2

i = x2
i , x

2+m
i , x2+2m

i , . . .
.
.
.

Xm
i = xm

i , x2m
i , x3m

i , . . .

2 for 1 ≤ i ≤ m do

Recursively merge Xi
1, X

i
2, . . . , X

i
` to get Yi = yi1, y

i
2, . . .

3 Shuffle Y1, Y2, . . . , Ym

Let Yi = y1i , y
2
i , . . . , y

`r/m
i where 1 ≤ i ≤ m

The shuffled sequence Z = y11 , y
1
2 , y

1
3 , ..., y

1
m, y21 , y

2
2 , y

2
3 , ..., y

2
m, . . . , . . . , y

`r/m
1 , y

`r/m
2 , . . . , y

`r/m
m

Claim : The length of the dirty sequence is no more than `m

Let Z = Z1, Z2, Z3, ...

for each i where |Zi| = `m

4a Sort and Merge Z1 & Z2;Z3 & Z4; · · ·

4b Sort and Merge Z2 & Z3;Z4 & Z5; · · ·

Figure 3: Step 4a (Top Arrows) And Step 4b (Bottom Arrows)

Now we are done!

Figure 4: A demonstration of the LMM Algorithm

2

Proof of Claim :

The minimum number of zeros contributed by any Xi to any Yj = bni

m c , where ni is the number of zeros in Xi , 1 ≤ i ≤ `

The maximum number of zeros contributed by any Xi to any Yj = dni

m e , where 1 ≤ i ≤ ` and 1 ≤ j ≤ m

=⇒ The difference between the number of zeros in Y1 & Ym is ≤ `. As a corollary, it follows that the length of the dirty
sequence is no more than `m. See Figure 5 for a worst case example. In this example, Y1 has ` more zeros than the others.
The other sequences have all ones in these ` columns.

Figure 5: Sequence Z could have a dirty sequence

Figure 6: An example input for which the dirty sequence is the longest

An Example : We’ll illustrate LMM in sorting M
√
M elements.

N = M
√
M B = D =

√
M

Sort N elements

Using LMM we can sort in 3 passes

1 Form runs of length M each; There are
√
M runs that we have to merge.

Let these runs be X1, X2, . . . , X√
M

2 Unshuffle each run into
√
M parts

3 Recursively Merge Xj
1 , X

j
2 , ..., X

j√
M

to get Yj , for 1 ≤ j ≤
√
M

4 Shuffle Y1, Y2, . . . , Y√
M

5 Clean up the dirty sequence

Figure 7: LMM in action for the example sorting problem

3

Analysis :

• Note that we have used LMM with ` = m =
√
M . Steps 1 and 2 take 1 pass together.

Figure 8: An optimal way to stripe the data after step 2. This striping enables us to perform step 3 in one pass.

• Step 3 takes 1 pass

Assume that we have a memory of size 2M . In this case we can clean up the dirty sequence while we are shuffling. Let
Z be partitioned into blocks of size M each: Z = Z1, Z2, . . ., where each block Zi is of size `m = M . Note that the dirty
sequence can only span two successive blocks. Therefore, one way of cleaning the sequence Z is to: sort and merge Z1 and
Z2; Z2 and Z3; etc. If we have 2M memory, we can do this cleaning as well as Step 4 in a total of one pass.

• As a result, Steps 4 and 5 take 1 pass.

∴ The Total Number of Passes = 3

Note: (Chaudhry and Cormen 2002) have shown that when B = D =
√
M , we can sort M

√
M

2 keys in 3 passes through the
data. They have implemented the column sort algorithm of (Leighton 1985). It turns out that the column sort algorithm is
indeed a special case of the LMM algorithm. Clearly, odd-even merge sort and the s2-way merge sort are also special cases
of LMM.

Note: When we analyze the I/O complexity of out-of-core algorithms we normally compute only the read complexity.
Typically, the write complexity will be similar.

4

