CSE 5095: Research Topics in Big Data Analytics
Lecture 09 (Feb 20, 2014)
Prof. Sanguthevar Rajasekaran
Notes prepared By: Gordon Devoe

SORTING ON PARALLEL DISK MODELS (PDM)

DISK STRIPED MERGE SORT (DSM)

>

» Run 1

Y

A

» Run 2

\ 4

Disk1 Disk2 .. DiskD

1 —Form runs of length M each.

2 — Merge the % runs using R-way merge where R = %. Note that since we normally assume that M =
©(DB), R will be O(1).

We'll keep BD keys from each run in memory. In the merge process whenever we run out of keys from any
run, we can bring the next DB keys of this run from the disks. When BD keys are ready in the merged output,
we write these keys in the disks. Note that the reads as well as writes are completely parallel and we do not
waste any bandwidth.

los(X
Total # of I/O operations = % * L Og((%)) + 1]. This can be much more than the optimal 1/0.
og ﬁ
Example:
N =M€
B = M€

Where C and € are constants. In this case, the # of passes in DSM:
Q(log(M)).
And

=

log ()
log ()

= 0(1).



SIMPLE RANDOMIZED MERGE SORT (SRM)

(Barve, Vitter, 1999)

Random Starting Disk:

B B

- SN >
— Runl
> > —> Run 2

A 4

CEI/ » Run 3

Disk 1 Disk2 .. DiskD
1 —Form runs of length M each. Stripe these runs starting from random disks.
2 — Merge the runs using R-way merge.
(R =06(D))
Barve & Vitter show that the expected performance is optimal if:
M = Q(BD *log(D))

(/, m) — MERGE SORT (LMM)

(Rajasekaran, 1999)

ODD-EVEN MERGE SORT

X =xq,%X3, ... ,X, € sorted
Y =y1,Y2 -, Y, € sorted
Tomerge X&Y:
1 - Partition X into X°44 and Xeven:
X0 = x. x5, X, ...
XV = x5, X4,Xg,
Similarly unshuffle Y into Y°44 and Yeven,
2 — Recursively merge X°44 and Y°44 to get Z; and recursively merge X" and Y¢'®" to get Z,.
3 —Shuffle Z;and Z,. Let:
Z,=a4,ay,...,0,

Zz = bl' bz, ...,bn



The shuffle of Z; and Z, is the sequence:

Q = ay,by,a3,b,y,a3,b3, ...,a,, by,
Perform one COMPARE-EXCHANGE operation on Q:

Q = aq,by,a3,b,y,a3,b3, ...,a,, by,

\VAV/

ZERO-ONE LEMMA

If any comparison-based oblivious sorting algorithm sorts all possible sequences of zeroes and ones correctly
then it also sorts any sequence of arbitrary elements.

Proof of correctness of the odd-even merge algorithm (using the zero-one lemma):

Let n,be the number of zeros in X.
Let n, be the number of zeroes in Y.
The number of zeroes in Z; is:
=[5+ 51
The number of zeroes in Z, is:
=[5+ [5]
—>These two numbers differ by at most 2.
Case 1: Number of zeroes in Z; equals the number of zeroes in Z,.
Z,~>000000...0011 ... 11
Z,—>000000...0011 ... 11
Shuffle:
Q -> 000000000000 ... 00001111 ... 1111 (compare-exchange operation not needed - already sorted)
Case 2: Number of zeroes in Z; equals the number of zeroes in Z, + 1.
Z,~>00..0011..11
Z,->00..0111..11
Shuffle:
Q - 0000 ... 00011111 ... 1111 (compare-exchange operation not needed - already sorted)
Case 3: Number of zeroes in Z; equals the number of zeroes in Z, + 2.
Z,~>00...00011 ... 11
Z,=>00..01111..11
Shuffle:



Q - 0000 ... Ooglllll ... 1111 (compare-exchange cleans the underlined ‘dirty sequence’)

Q - 0000 ...000111111 ... 1111

An extension of the odd-even merge algorithm has been proposed by (Thompson and Kung 1977). This
algorithm was proposed to sort a mesh. If X = k4, k,, -+, k,, is a given input sequence, the idea is to partition
the input into / equal sized parts (for some integer />2), sort each part recursively, and merge these sequences
using the above 2-way merge algorithm. The (/, m)-merge sort (LMM) is an extension of the algorithm of

Thompson and Kung.



