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In the last lecture, we looked into basic operations on B-trees: Searching and insertion. In this
lecture we will look into the operation of deleting a key from the B-tree.

Delete(x, k):

—> Similar to search and insert operations, when we say Delete(x, k), it implies deleting a key k&
from the subtree rooted at x.

-> While inserting a key k into a B-tree, when a recursive call is made to any node x, we always
make sure that the node is not full. In the delete process, when a recursive call is made to any
node x, we should ensure that the node has at least 7 keys, to ensure that the deletion can be
performed in one forward pass through a path in the tree starting from the root.

Various cases of deleting keys from a B-tree:

Case 1a:
If xis a leaf, and k € x, then delete k from x.

Let nyis the total number of keys in x, then
nx=ny-1; /*thatis the number of keys in x is decreased by 1*/

Case 1b: If x is a leaf and x does not contain k, then report error and quit.



Case 2:
k € x and x is not a leaf.
Let k =k}

Case 2a:
Check if the left sub tree C/* has atleast t keys. If this is the case, let q be the largest key
in C{*. Replace k with g and recursively delete q from C/*(i.e., delete(C{, q)).
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Case 2b:
Check if the right sub tree C}, ; has atleast t keys. This case is symmetric to case 2a. Here

we look for the smallest key in Cf ; to replace k.

Case 2c:
Both subtrees C*and C{%,; have (t-1) keys each.
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In this case,

i) Merge C*and C., together with k to form a new node. This node will have keys
of Cf, followed by k, followed by keys of /.
ii) The node x loses k and the pointer to C ;.

iii) Recursively delete (C7, k)

Case 3:
k Z x and x is not a leaf.
Identify i such that k¥ | < k < k¥
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Case 3a:
Check if the left sub tree C/* has atleast t keys. In this case, call delete recursively on C7. (ie.,
delete(C/", k) ).

Case 3b:
If C} has (t-1) keys and C/, ; has > t keys:
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Let g be the smallest key of C/%, ;. In this case,
i) Replace kFwith g
ii) Move k as the largest key of C}*; also move the first (i.e., leftmost) subtree of
C}.,as the last (ie., rightmost) subtree of C}
iii) Recursively delete (C7, k)

Thus the ordering of keys is preserved and also we ensure that the nodes have at least t
keys.

Case 3c:
If C} has (t-1) keys and C}* | has > t keys:
This case is symmetric to case 3b

Case 3d:
CY,, C},and C{ , have exactly (t-1) keys each:
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After merging, we can recursively delete(C/* ;, k).

Note: If at any time, x has 0 keys, then x is deleted and its only child becomes the root. This
is an exception and happens only at the root decreasing the height of the tree by one and
preserving the property that the root of the tree contains at least one key.

Theorem:
In a B-Tree, the operations Insert, delete, search, FindMin (where we can get the leftmost

key) and FindMax (we can access the rightmost key in the tree) take O (:Z:Z) [/0

operations each.

The Minimum Spanning Tree (MST) Problem

PRIM’s Algorithm:

Next we will move on to the problem of finding a minimum spanning tree (MST) of a
weighted graph G in the out of core computing setting.

Input: A weighted undirected graph G(V,E)
Output: A minimum spanning tree of G

Prim’s algorithm always has a single subtree which is grown one node at a time. The tree
starts with the lightest edge. At any time we add the lightest edge going out of the tree (i.e.,
the lightest edge that goes from a tree node to a non-tree node).

This strategy is greedy since, in each iteration, the tree gains an edge that adds the
minimum amount possible to the tree's weight. During execution of the algorithm, all
vertices that are not in the tree reside in a min-priority queue Q. For each vertex v, key[v] is
the minimum weight of any edge connecting v to a vertex in the tree.

Also, we define a data structure Near as follows. For any non-tree node u, Near[u] is
following:
Near[u] = the nearest tree neighbor of the vertex u;

PRIM’s Algorithm to find MST for the graph G(V,E):

Procedure PRIM’s_MST(G)
Step 1: Find the lightest edge e = (a,b) in the graph. Add it to the tree T.

T={a,b}
Step 2:
For every ueV-{a,b} do

if cost(u,a) < cost(u,b) then
Near([u] = a;

else
Near([u] = b;

endlf

endFor



Step 3:
For every ueV—{a,b} do
Insert u into a priority queue Q with a key of cost (u, Near[u]);

endFor
Step 4:
Fori=1to|V]—-2do
Find the smallest key in Q;
Let u be the corresponding node;
Insert u into T;
Step 5: For w € Adj(u) do
if cost(w, Near[w]) > cost(w, u) then
Near[w] = u;
endFor
end procedure

Now let’s think about the representation of a graph in the disk. Let the graph be
represented as the adjacency lists of all nodes as in the following figure.
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Here n=[V]

Please note that the size each of the lists Lj, Lz...L, need not be an integral multiple of the
block size B.



Assumption:

Assume that there is space in core memory for the priority queue Q. Note that the size of Q
is O(n).

Let’s analyze the time taken for each of the steps in the Prim’s algorithm according to the
assumption we made above.
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If M # Q(n), we can use a B-tree to implement priority queue. In this case, figuring
out the I/0 complexity is left as an exercise.

Kruskal’s Algorithm:
We will next look at the Kruskal’s algorithm which is widely used to find the MST.
Before we look at the algorithm, let’s revisit the union-find data structure.

As we know, Kruskal’s algorithm uses union-find data structure.

Union-Find data structure:
We have n-sets {1}, {2}, ..., {n}
We want to perform a sequence of Union-find operations

Union(A, B) - performs a destructive union of the two sets named A and B,
i.e., after the union of A and B is computed, the sets A and B will not exist any more.

Find(x) - returns the name of the set x belongs to.
We can represent the sets as trees.

A={3,56}; B={1,2}; C={4}
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For simplicity we can use the root as the name of the set represented by any tree. For
example, Find(2) returns 1.

Union(5,1): One root is made a child of the other root. Specifically, the root of the tree with
the smaller number of elements is made a child of the other root. In this case we can
shown that Union takes O(1) time and Find takes O(log n) time where n is the number of
elements in the tree.



