
CSE 5095: Research Topics in Big Data Analytics
Lecture 06 (Feb 06, 2014)

Prof. Sanguthevar Rajasekaran
Prepared By: Abdullah-Al Mamun

Data structures play a key role in data processing and algorithms. Tree-based data
structures exist in both in-core and out-of-core settings. 2-3 tree, B-tree, red-black tree,
etc. are examples of widely used tree-based data structures. Popular operations such as
insert, delete, search, etc. can be processed in these trees in time proportional to the
heights of them. Since data are transferred in blocks of B items, these operations will
take Ω(logB N) I/O operations in an external memory model.

One of the most widely used out-of-core memory data structures is a B-tree. A B-tree
is a balanced search tree which has a height of O(logt n) where n is the number of keys
and t is a parameter characterizing the B-tree. We’ll choose t to be Θ(B). A B-tree has
the following properties:

1. Any node u has the following information in it:
nu : the number of keys in u.
leafu : a bit whose value is 1 if u is a leaf and 0 otherwise.
Keys : ku1 , k

u
2 , ..., k

u
nu

in non decreasing order.
If u is not a leaf, it has pointers to (nu + 1) children, namely cu1 , c

u
2 , ..., c

u
nu+1.

2. All the leaves are at the same level.

3. Let qi be any key in cui , 1 ≤ i ≤ (nu + 1). Then kui−1 ≤ qi ≤ kui . Assume that
ku0 = −∞ and knu+1 =∞ for any node u in the tree.

4. Degree is defined with a parameter t. Any node other than the root has ≥ (t− 1)
and ≤ (2t− 1) keys. The root has ≥ 1 key.

Definition: A node is Full if it has (2t− 1) keys.
Note: Pick a value for t such that the size of a full node is the same as the block size
B, i.e. t = Θ(B).

Lemma: If h is the height of a B-tree with n keys, then h ≤ logt
n+1
2 .

1



Proof: To prove the upper bound, consider the case where the least number of keys are
present in the nodes.

number of nodes level number

1 0
2 1
2t 2
... ...
2th−1 h

The minimum number of keys in a B-tree with the parameter t is thus
= 1 + 2(t− 1) + 2t(t− 1) + ... + 2th−1(t− 1)
= 1 + 2(t− 1)[1 + t + t2 + ... + th−1]

= 1 + 2(t− 1) t
h−1
t−1

= 2th − 1

So
n ≥ 2th − 1
th ≤ n+1

2
h ≤ logt

n+1
2

[Proved]

In a similar manner we can prove that the height of a B-tree with the parameter t
is Ω(logt n).

Search(u, k): (look for k in the subtree rooted at u)
The algorithm used for this search operation is :

2



procedure Search(u, k)
if k = kui for some i, 1 ≤ i ≤ nu then

Output (u, i)
else if u is a leaf and k /∈ u then

Output NIL
else

ku0 ← −∞ . for all nodes u
kunu+1 ←∞ . for all nodes u
Using a binary search identify i such that kui−1 ≤ k ≤ kui
DISK READ(cui )
SEARCH(cui , k)

end if
end procedure

SplitNode(u, i, w): An operation called Split Node will be used in Insert operations.
This method is called when w is full. This method splits w into 2. u is the non-full
parent of w and w is the ith child of u.

procedure SplitNode(u, i, w)
Create a new node x
leafx ← leafw

for 1 ≤ j ≤ (t− 1) do
kxj ← kwj+t

end for
for j ← nu down to i do

kuj+1 ← kuj ; cuj+1 ← cuj
end for
kui ← kwt ; cui+1 ← x
if w is not a leaf then

for j ← 1 to t do
cxj = cwj+t

end for
end if
nu ← nu + 1;nx ← t− 1;nw ← t− 1

end procedure

While inserting a key k into a B-tree we always make sure that the node that we
recurse to is not full. This will help us in ensuring that the insert operation can be
processed in one forward traversal through a path in the tree (starting from the root
and ending in a leaf). We thus have two different procedures called INSERT and
INSERT NONFULL. The second procedure is called on a non full subtree (rooted at
say u). The first procedure is called at the root. This procedure splits the root into two
if the root is full, and invokes the second procedure. INSERT NONFULL identifies
the subtree w of the current node u that k belongs to and recursively calls itself on the

3



Figure 0.1: Split node into 2 nodes

subtree w. Before making this recursive call, it splits w if it is full.

Insert(T, k):

procedure Insert(T, k)
r ← root(T )
if nr = (2t− 1) then

Create a new node s
ns ← 0
leafs ← 0

4



cs1 ← r
SPLITNODE(s, 1, r)
root(T )← s; r ← s

end if
INSERT NONFULL(r, k)

end procedure

procedure Insert NonFull(u, k) . u has to be non-full
if u is a leaf then

Insert k at the right place
nu ← nu + 1

end if
if u is not a leaf then

Choose i such that kui−1 ≤ k < kui . k has to be inserted into cui
end if
if ncui

= 2(t− 1) then
SPLITNODE(u, i, cui )
if k ≥ kui then

i← i + 1
end if

end if
INSERT NONFULL(cui , k)

end procedure

Delete(u, k): This operation is analogous to insertion. Deletion works on nodes having
at least t keys so that at least (t− 1) keys are present in a node after the operation.

more details on this topic will be discussed in the next lecture

5


