CSE6512 Lecture 9 Notes

Ruofan Jin

September 27, 2011

1 Hashing

Definition A family H of hash functions is 2-universal if for any $x, y \in M$ with $x \neq y$,

$$
\operatorname{Prob}[h(x)=h(y)] \leq \frac{1}{n},
$$

where $h \in H, h: M \rightarrow N, M=\{0,1, \ldots, m-1\}, N=\{0,1, \ldots n-1\}$.

Construction:

Pick a prime $p \geq m$, use the field $\mathbb{Z}_{p}=\{0,1, \cdots p-1\}$. Let $f_{a, b}(x)=a x+b \bmod p$, for $a, b \in \mathbb{Z}_{P}, a \neq 0$. Let $g(x)=x \bmod n$, and let $h_{a, b}(x)=g\left(f_{a, b}(x)\right)=(a x+b) \bmod p \bmod n$. Then

$$
\begin{aligned}
& H=\left\{h_{a, b}: a, b \in \mathbb{Z}_{p}, a \neq 0\right\} \\
& |H|=p(p-1)
\end{aligned}
$$

Note. \exists a prime number between m and $2 m$ for any integer $m \Rightarrow$ Any member of H can be specified with $O(\log m)$ bits.
Definition $\delta(x, y, h)= \begin{cases}1 & \text { if } h(x)=h(y), x \neq y \\ 0 & \text { otherwise }\end{cases}$
$\delta(X, y, h), \delta(x, y, H)$, etc. can be defined likewise.
Fact. If His 2-univeral, then $\forall x, y \in M, \delta(x, y, H) \leq \frac{|H|}{n}$.
Fact. If H is 2-univeral and $S \subseteq M$, then $\forall x \in M$ and a randomly picked $h \in H, E[\delta(x, S, h)] \leq \frac{|S|}{n}$.
Lemma. If $H=\left\{h_{a, b}: a, b \in \mathbb{Z}_{p}, a \neq 0\right\}$, then $\forall x, y \in \mathbb{Z}_{p}, x \neq y$,

$$
\delta(x, y, H)=\delta\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}, g\right)
$$

Proof. The above statement says that the number of functions in H under which x and y collide is the same as the number of pairs in \mathbb{Z}_{P} that collide under g. Fix x and y and let $r=(a x+b) \bmod p$ and $s=(a y+b) \bmod p$. Note that if $x \neq y$, then $r \neq s$. Let $F(a, b)=((a x+b) \bmod p,(a y+b) \bmod p)$.

Fact. F is one-to-one and onto.
Consider two pairs $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$. Let $F\left(a_{1}, b_{1}\right)=\left(r_{1}, s_{1}\right)$ and $F\left(a_{2}, b_{2}\right)=\left(r_{2}, s_{2}\right)$.
If $\left(a_{1}, b_{1}\right) \neq\left(a_{2}, b_{2}\right)$, can $\left(r_{1}, s_{1}\right)=\left(r_{2}, s_{2}\right)$? Note that $r_{1}=\left(a_{1} x+b_{1}\right) \bmod p$ and $r_{2}=\left(a_{2} x+b_{2}\right) \bmod p$. If $r_{1}=r_{2}$, then, $x=\left(b_{2}-b_{1}\right)\left(a_{1}-a_{2}\right)^{-1} \bmod p$. Similarly, if $s_{1}=s_{2}$, we can see that $y=\left(b_{2}-b_{1}\right)\left(a_{1}-a_{2}\right)^{-1} \bmod p$. As a result, if $\left(r_{1}, s_{1}\right)=\left(r_{2}, s_{2}\right)$, it will imply that $x=y$ which is a contradiction. Thus F is one-to-one.
Let (r, s) be any pair from \mathbb{Z}_{P} with $r \neq s$. We can solve $a x+b \bmod p=r$ and $a y+b \bmod p=s$ to get a unique pair (a, b) with $a \neq 0$. Thus F is onto.
We realize that the function $f_{a, b}$ cannot make x and y to collide if $x \neq y$. For a given x and y (with $x \neq y$), when we change a and $b, F(a, b)$ ranges over all pairs (r, s) (with $r, s \in \mathbb{Z}_{p}$ and $r \neq s$). Collisions happen only because of the function g.
For a given x and y, the number of hash functions that make x and y to collide is the same as the number of pairs (a, b) (with $a \neq 0)$ for which $h_{a, b}(x)=h_{a, b}(y)$. This number is the same as the number of pairs (a, b) for which $g\left(f_{a, b}(x)\right)=g\left(f_{a, b}(y)\right)$. In turn, this number is the same as the number of pairs (r, s) (with $r, s \in \mathbb{Z}_{p}$ and $r \neq s$) for which $g(r)=g(s)$.

Lemma. H is 2-universal. i.e. $\delta(x, y, H) \leq \frac{|H|}{n}$.
Proof. Let $A_{Z}=\left\{x \in \mathbb{Z}_{P}: g(x)=Z\right\}, Z=0,1, \ldots, n-1$.
Note that $A_{Z} \leq\left\lceil\frac{p}{n}\right\rceil$ for any $Z \in N$.
$\Rightarrow \delta\left(\mathbb{Z}_{P}, \mathbb{Z}_{P}, g\right) \leq p\left(\left\lceil\frac{p}{n}\right\rceil-1\right) \leq p \frac{(p-1)}{n}=\frac{|H|}{n}$.

2 Searching in $O(1)$ time (M. Ajtai, J. Komlós \& E. Szemerédi, 1985)

Let $M=\{0,1, \ldots, m-1\}, N=\{0,1, \ldots, n-1\}$. W.L.O.G., let $p=m+1$ be a prime number.
For any $1 \leq k \leq m$, let $h_{k}(x)=k x \bmod p \bmod n$.
Let $V \subseteq M$ be the input set where $|V|=v$. Let $B_{i}(k, n, V)$ be the set of elements of V that are hashed into i, i.e.,

$$
B_{i}(k, n, V)=\left\{x \in V: h_{k}(x)=i\right\}, i=0,1, \ldots, n-1
$$

Let $b_{i}(k, n, V)=\left|B_{i}(k, n, V)\right|$.
Lemma. $\sum_{k=1}^{m} \sum_{i=0}^{n-1}\binom{b_{i}(k, n, V)}{2}<\frac{m v^{2}}{n}$ for all $V \subseteq M$ and $n>v$.

Proof. $\binom{b_{i}(k, n, V)}{2}$ is the number of sets $\{x, y\}$, s.t. x and y collide under h_{k} and $h_{k}(x)=i$. And $\sum_{i=0}^{n-1}\binom{b_{i}(k, n, V)}{2}$ is the number of sets $\{x, y\}$, s.t., x and y collide under h_{k}. Likewise, $\sum_{k=1}^{m} \sum_{i=0}^{n-1}\binom{b_{i}(k, n, V)}{2}$ is the number of tuples $(k,\{x, y\})$, s.t. x and y collide under h_{k}.
\Rightarrow It is the number of tuples $(k,\{x, y\})$, s.t., $k x \bmod p \bmod n=k y \bmod p \bmod n$.
$\Rightarrow k(x-y) \bmod p \in\left\{ \pm n, \pm 2 n, \ldots, \pm\left\lfloor\frac{p-1}{n}\right\rfloor n\right\}$
Note that $k(x-y) \bmod p=j n$ has a unique solution for k if we fix x and y, for any $j=1, \ldots,\left\lfloor\frac{p-1}{n}\right\rfloor$.
\Rightarrow For any $x, y \in \mathbb{Z}_{P}, \exists \leq 2\left(\frac{p-1}{n}\right)$ functions h_{k} under which x and y collide.
$\Rightarrow \sum_{k=1}^{m} \sum_{i=0}^{n-1}\binom{b_{i}(k, n, V)}{2} \leq\binom{ v}{2} \frac{2(p-1)}{n}<\frac{(p-1) v^{2}}{n}=\frac{m v^{2}}{n}$.
Corollary. $\exists k$, s.t., $\sum_{i=0}^{n-1}\binom{b_{i}(k, n, V)}{2}<\frac{v^{2}}{n}$.

