CSE6512 Lecture 9 Notes

Ruofan Jin September 27, 2011

1 Hashing

Definition A family H of hash functions is 2-universal if for any $x, y \in M$ with $x \neq y$,

$$Prob\left[h\left(x\right) = h\left(y\right)\right] \le \frac{1}{n},$$

where $h \in H, h : M \to N, M = \{0, 1, \dots, m-1\}, N = \{0, 1, \dots, n-1\}.$

Construction:

Pick a prime $p \ge m$, use the field $\mathbb{Z}_p = \{0, 1, \dots, p-1\}$. Let $f_{a,b}(x) = ax + b \mod p$, for $a, b \in \mathbb{Z}_P, a \ne 0$. Let $g(x) = x \mod n$, and let $h_{a,b}(x) = g(f_{a,b}(x)) = (ax + b) \mod p \mod n$. Then

$$H = \{h_{a,b} : a, b \in \mathbb{Z}_p, a \neq 0\}$$
$$|H| = p(p-1).$$

Note. \exists a prime number between m and 2m for any integer $m \Rightarrow Any$ member of H can be specified with $O(\log m)$ bits.

 $\delta(X, y, h), \delta(x, y, H)$, etc. can be defined likewise.

Fact. If H is 2-univeral, then $\forall x, y \in M$, $\delta(x, y, H) \leq \frac{|H|}{n}$.

Fact. If H is 2-universal and $S \subseteq M$, then $\forall x \in M$ and a randomly picked $h \in H$, $E[\delta(x, S, h)] \leq \frac{|S|}{n}$.

Lemma. If $H = \{h_{a,b} : a, b \in \mathbb{Z}_p, a \neq 0\}$, then $\forall x, y \in \mathbb{Z}_p, x \neq y$,

$$\delta(x, y, H) = \delta(\mathbb{Z}_p, \mathbb{Z}_p, g)$$

Proof. The above statement says that the number of functions in H under which x and y collide is the same as the number of pairs in \mathbb{Z}_P that collide under g. Fix x and y and let $r = (ax + b) \mod p$ and $s = (ay + b) \mod p$. Note that if $x \neq y$, then $r \neq s$. Let $F(a, b) = ((ax + b) \mod p, (ay + b) \mod p)$.

Fact. F is one-to-one and onto.

Consider two pairs (a_1, b_1) and (a_2, b_2) . Let $F(a_1, b_1) = (r_1, s_1)$ and $F(a_2, b_2) = (r_2, s_2)$.

If $(a_1, b_1) \neq (a_2, b_2)$, can $(r_1, s_1) = (r_2, s_2)$? Note that $r_1 = (a_1x + b_1) \mod p$ and $r_2 = (a_2x + b_2) \mod p$. If $r_1 = r_2$, then, $x = (b_2 - b_1)(a_1 - a_2)^{-1} \mod p$. Similarly, if $s_1 = s_2$, we can see that $y = (b_2 - b_1)(a_1 - a_2)^{-1} \mod p$. As a result, if $(r_1, s_1) = (r_2, s_2)$, it will imply that x = y which is a contradiction. Thus F is one-to-one.

Let (r, s) be any pair from \mathbb{Z}_P with $r \neq s$. We can solve $ax + b \mod p = r$ and $ay + b \mod p = s$ to get a unique pair (a, b) with $a \neq 0$. Thus F is onto.

We realize that the function $f_{a,b}$ cannot make x and y to collide if $x \neq y$. For a given x and y (with $x \neq y$), when we change a and b, F(a,b) ranges over all pairs (r,s) (with $r,s \in \mathbb{Z}_p$ and $r \neq s$). Collisions happen only because of the function g.

For a given x and y, the number of hash functions that make x and y to collide is the same as the number of pairs (a, b) (with $a \neq 0$) for which $h_{a,b}(x) = h_{a,b}(y)$. This number is the same as the number of pairs (a, b) for which $g(f_{a,b}(x)) = g(f_{a,b}(y))$. In turn, this number is the same as the number of pairs (r, s) (with $r, s \in \mathbb{Z}_p$ and $r \neq s$) for which g(r) = g(s).

Lemma. *H* is 2-universal. *i.e.* $\delta(x, y, H) \leq \frac{|H|}{n}$.

Proof. Let $A_Z = \{x \in \mathbb{Z}_P : g(x) = Z\}, Z = 0, 1, \dots, n-1.$ Note that $A_Z \leq \left\lceil \frac{p}{n} \right\rceil$ for any $Z \in N$. $\Rightarrow \delta(\mathbb{Z}_P, \mathbb{Z}_P, g) \le p\left(\left\lceil \frac{p}{n} \right\rceil - 1\right) \le p^{\frac{(p-1)}{n}} = \frac{|H|}{n}.$

Searching in O(1) time (M. Ajtai, J. Komlós & E. Szemerédi, 1985) $\mathbf{2}$

Let $M = \{0, 1, \dots, m-1\}$, $N = \{0, 1, \dots, n-1\}$. W.L.O.G., let p = m+1 be a prime number. For any $1 \le k \le m$, let $h_k(x) = kx \mod p \mod n$.

Let $V \subseteq M$ be the input set where |V| = v. Let $B_i(k, n, V)$ be the set of elements of V that are hashed into i, i.e.,

$$B_i(k, n, V) = \{x \in V : h_k(x) = i\}, i = 0, 1, \dots, n-1.$$

Let $b_i(k, n, V) = |B_i(k, n, V)|$.

Lemma.
$$\sum_{k=1}^{m} \sum_{i=0}^{n-1} {\binom{b_i(k,n,V)}{2}} < \frac{mv^2}{n} \text{ for all } V \subseteq M \text{ and } n > v$$

Proof. $\binom{b_i(k,n,V)}{2}$ is the number of sets $\{x,y\}$, s.t. x and y collide under h_k and $h_k(x) = i$. And $\sum_{i=0}^{n-1} \binom{b_i(k,n,V)}{2}$ is the number of sets $\{x, y\}$, s.t., x and y collide under h_k . Likewise, $\sum_{k=1}^{m} \sum_{i=0}^{n-1} {b_i(k,n,V) \choose 2}$ is the number of tuples $(k, \{x, y\})$, s.t. x and y collide under h_k .

 \Rightarrow It is the number of tuples $(k, \{x, y\})$, s.t., $kx \mod p \mod n = ky \mod p \mod n$.

$$\Rightarrow k(x-y) \bmod p \in \left\{ \pm n, \pm 2n, \dots, \pm \left\lfloor \frac{p-1}{n} \right\rfloor n \right\}$$

Note that $k(x-y) \mod p = jn$ has a unique solution for k if we fix x and y, for any $j = 1, \ldots, \lfloor \frac{p-1}{n} \rfloor$.

 \Rightarrow For any $x, y \in \mathbb{Z}_P, \exists \leq 2\left(\frac{p-1}{n}\right)$ functions h_k under which x and y collide.

$$\Rightarrow \sum_{k=1}^{m} \sum_{i=0}^{n-1} {\binom{b_i(k,n,V)}{2}} \le {\binom{v}{2}} \frac{2(p-1)}{n} < \frac{(p-1)v^2}{n} = \frac{mv^2}{n}.$$

Corollary. $\exists k, s.t., \sum_{i=0}^{n-1} {\binom{b_i(k,n,V)}{2}} < \frac{v^2}{n}.$