
Class Lecture – Eight (8) 

Randomized Hashing 
Two data structures of interest are: 

1) Static Dictionary: where a set of keys S is given and we have to 
organize it into a data structure that supports the efficient 
processing of FIND operations. 

2) In a Dynamic Dictionary the set is not provided in advance rather it 
is constructed by a series of INSERT and DELETE operations that 
are intermingled with the FIND operations. 

 
The above can be realized using balanced search trees, random treaps, 
random skip lists, etc. But in the worst-case, for a set S of size s, they 
require Ω(log s) time to process any search or update operation. When 
the keys are general, this is a lower bound on the search time. 
 
We can do better if additional information is known about the keys. One 
such case is when the keys in S are integers from a universe M where M 
= {0, 1, 2, …, m-1}. If we have O(m) memory, we can use a bit array of 
size m and perform the dictionary operations in O(1) time. If m is very 
large and we have only have O(n) space, we can use hashing. The idea is 
to use an array T[0:n-1] of lists and a hash function h:M->N where 
N={0,1, … ,n-1}. If x is any element in the data structure it will be stored 
in the list T[h(x)]. If the elements of S are assumed to be randomly picked 
from M and if n=cs for some constant c, then the expected length of each 
of the lists in T will be O(1) and hence each of the dictionary operations 
can be performed in an expected O(1) time. This expectation is in the 
space of all possible inputs. 
 
We can achieve a similar performance using randomization. In this case 
we will not assume uniformity in the input space.  
 
Definition 1:  A collision is said to occur between two distinct keys x and        
y if h(x) = h(y) and they are said to collide                  
at the corresponding location in T. 



 
Definition 2: A hash function h : M →  N is said to be perfect for a set S 
⊆  M if h does not cause any collisions among the keys of the set S. 
 
Fact: For any given set S ⊆  M we can always find a hash function h that 
is perfect for S. 
 
 
                   M                                                                       N  
                    
 
Proof: Let |S| = s  ≤  |N|.  So, the total number of hash functions from 
M to N = nm. The number of hash functions that are perfect for S =                  
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Fact: For any hash function h, we can find a S ⊆  M such that h is not 
perfect for S.  
 
Proof: Since N>M, at least two elements x and y of M will collide under 
any h. Include these two in S. □ 
 
Since a single hash function may not be perfect for each possible S, we 
can use a family of hash functions. Also, we may insist on near 
perfectness rather than perfectness. If for each possible S, a “good” 
number of hash functions in the family is near perfect, then if we pick a 
random member of the hash family, it will be near perfect for the given S 
with some “good” probability. 
 
Definition 3: Let M = {0, 1, 2, …, M - 1} and N = {0,1, 2, …, n - 1}, with m 
≥  n. A family H of functions from M into N is said to be 2-universal if, for 
all x, y ⊆  M such that x ≠   y, and for h chosen uniformly at random   

from H, Prob [h(x) = h(y)] ≤  
n
1 .                       

Note: The set of all functions from M to N has this property. A totally 
random mapping from M to N has a collision probability of exactly 1/n; 
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thus, a random choice from a 2-univarsal family of hash functions gives 
a seemingly random function. But there are nm functions in that family. 
This calls for Ω(m * log n) memory (even to specify a member of the 
family). 
 
Definition 4: For any x, y ⊆   M and h ⊆  H, define the following indicator 
function for a collision between the keys x, y under the hash function h:    
                          
                      1 for h(x) = h(y) and x ≠   y 
(x, y, h) =    
                      0 otherwise  
 
For all X, Y ⊆  M, the following extensions of the indicator function  can 
be defined as: 
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For a 2-universal family H and x ≠   y, we have (x, y, H) ≤ |H|/n. 
 
Lemma 1: Let, H be any family of hash functions, then we can always 

find x, y ⊆  M such that (x, y, H) ≥
m
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Proof:  
Let h be any member of H and Az = { x ∈ M: h(x) = z } for z = {0, 1, .., n -1}. 
The sets Az, for z ∈ N, form a partition of M. 
 
 
 



 
 
                                                                                                                                  
                                                                          
 
 
 
 
 
 
 
It is easy to see that, 
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This sum is minimal if all the Az’’s are of the same size, i.e., m/n. So, we 
obtain:     
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By the pigeonhole principle there must exists a pair of elements x, y ⊆  M 

such that:  (x, y, H) ≥  2

 H) M, (M,
m

δ  =   2

 h) M, (M,||
m

H δ  ≥   2

2  )/1/1(||
m

mnmH −                     

                                 =|H|(
n
1  - 

m
1 ). □    

 
Lemma 2: Let, S be any subset of M and H be a 2-universal family of 
hash functions. If h is randomly picked from H, then E[(x, S, h)] ≤ 
|S|/n, for any x from M. 
 
Proof: 

                         E[(x, S, h)] = ∑
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Lemma 3: If there are q dictionary operations, then the expected time to 

process them will be O(q(1+
n
s )) where s is the max number of INSERT 

operations.  □ 
 
Construction of a 2-universal family of hash functions: 
 
Pick prime number p ≥  m. Use the field Zp = {0, 1, .., p -1}.  
Let, fa,b (x) = (ax + b) mod p for a, b ∈ Zp with a ≠  0 and g(x) =                  
x mod n; define ha,b(x) = g(ha,b(x)) = (ax + b)mod p mod n. 
Let H = {ha,b(x) |  a, b ∈ Zp, a ≠  0} 
Consequently, |H| = p(p -1). Note that any member of H can be specified 
with O(log m) bits.   
Lemma 4:  The above H is 2-universal.   
Proof: in the next lecture. 
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