
 CSE 6512 Lecture 7 Notes
 Sudipta Pathak
 September 20, 2011

Pattern Matching:

INPUT : T = t1t2t3......................tn Є ∑*

 P = p1p2p3...................pm Є ∑*

OUTPUT: All the indices i such that Ti = titi+1ti+2........ti+m-1 = P

Algorithm : for i= 1 to (n-m+1) do
 check if Ti = P
 using the previous algorithm (for checking the equality of two integers)
 if yes, output i;

Analysis : Let the prime be picked from the interval [1,k] =>
of such primes = Ɵ (k/log k)

probability of an incorrect answer for a specific i= m/(k /log k)
=> probability of an incorrect answer for at least one such i is ≤ n.m/(k /log k)

we want this to be ≤ n-α

=> n.m/(k / log k) = n-α

=> m.nα+1 = k/(log k)

pick k to be (m.nα+1) log (m.nα+1) = Ω (m.nα+1 log n).

Note : Ti = 2m-1ti + 2m-2ti+1 + …........................+ 2ti+m-2 + ti+m-1
 Ti+1 = 2m-1ti+1 + 2m-2ti+2 + …........................+ 2ti+m-1 + ti+m
 2Ti = 2m ti + 2m-1ti+1 + 2m-2ti+2 + …................+ 2ti+m-1

 Ti+1 = 2Ti – 2m ti + ti+m.
The above equality implies that for each i (1≤i≤n-m+1), checking if Ti = P takes only
O(1) time.
As a result, the total runtime is = O(n).

We can convert this into a Las Vegas algorithm by brute force checking for every

“HIT”. A “HIT” occurs for position i if Ti mod p = P mod p, where p is the prime
number used. The worst case runtime of this algorithm is Ω (m.n).

RANDOMIZED SKIP LIST:

A randomized skip list is a data structure that can be used to realize a dictionary, i.e., a
data structure that supports these three operations: SEARCH, INSERT, and DELETE.

Let S be a given ordered set.
A leveling of S with r levels is a sequence :
Lr ! Lr"1 !!! L2 ! L1 where L1 = S & Lr = Φ

Definition:
The level of any element x is ℓ(x) = Max i such that x Є Li.

Definition :
An interval at any level is nothing but an interval of two successive elements. The
following is an example where S = {2, 3, 5, 15, 17, 28, 31, 45, 62, 75}. Assume that the
two elements -∞ and +∞ are members of each level. Using the intervals of the different
levels we can construct a tree as shown below.

 -∞--- +∞

 -∞------------------------------------ 17 ------------------------- 45 ------------------------- +∞

 -∞--------------------------- 15 ----- 17 ------------------------- 45 ------------------------- +∞

 -∞------------- 3------------ 15 ----- 17 ------------------------- 45 ------ 62 -------------- +∞

 -∞----- 2 ----- 3----- 5----- 15 ----- 17 ----- 28 ------31 ------ 45 ------ 62 ------ 75 --- +∞

TREE :

Definition :
For any element x, let Ij(x) stand for the interval that x belongs in level j.

SEARCH(x):
Go through : Ir(x),Ir-1(x),Ir-2(x),.....................,until the answer is found.

TIME NEEDED : ∑ 1
c(Ij(x)) where c(Ij(x)) is the # of children of Ij(x).

 j=r

Prob[level(x) = h] = (½)h-1(1/2)=(1/2)h

Prob[level(x) ˃ h] = (½)h+1[1 + ½ + 1/4 + …...] ≤ (½)h

Prob[Ǝ x whose height is > h] ≤ n (½)h

we want this to be ≤ n-α

=> n-α = n (½)h

=> 2h = nα+1

=> h = (α+1) log (n)
=> The height of the tree is Õ(log n)

What is E[∑ 1
c(Ij(x))] ?

 j=r

If some node Q at level j has q children, this could only be because the elements
x2,......,xq-1 were not picked to be in Lj & they were in Lj-1. The # of such elements (that
are not in Lj) is upper bounded by a Geometric Distribution with parameter ½.
=> the expected value = 2

=> E[cj(I)]= O(1) for any interval I

=> E[∑ 1
c(Ij(x))]

 j=r

=> (1- n-α)O(log n)O(1) + n-α..O(n)
=> O(log n)

E[A]= E[A / B]Pr[B]+E[A / B]Pr[B]

INSERT(x):
Pick a random level for x. If ℓ(x) > r increment r by 1. Use the search algorithm to find
a relevant place for x. Some of the intervals may have to be split.

Expected time = O(log n).
Delete also is processed likewise.

Theorem : In a random skiplist we can perform the following operations in an expected
O(log n) time : SEARCH, INSERT, and DELETE.

