<u>CSE 6512 Lecture 7 Notes</u> <u>Sudipta Pathak</u> <u>September 20, 2011</u>

Pattern Matching:

<u>OUTPUT</u>: All the indices i such that $T_i = t_i t_{i+1} t_{i+2} \dots t_{i+m-1} = P$

<u>Algorithm</u>: for i= 1 to (n-m+1) do check if T_i = P using the previous algorithm (for checking the equality of two integers) if yes, output i;

<u>Analysis</u>: Let the prime be picked from the interval [1,k] =# of such primes = Θ (k/log k)

probability of an incorrect answer for a specific $i = m/(k / \log k)$ => probability of an incorrect answer for at least one such i is $\leq n.m/(k / \log k)$

we want this to be $\leq n^{-\alpha}$

 $=> n.m/(k / \log k) = n^{-\alpha}$

 $=> m.n^{\alpha+1} = k/(\log k)$

pick k to be $(m.n^{\alpha+1}) \log (m.n^{\alpha+1}) = \Omega (m.n^{\alpha+1} \log n).$

 $\frac{Note:}{T_i = 2^{m-1}t_i + 2^{m-2}t_{i+1} + \dots + 2t_{i+m-2} + t_{i+m-1}}{T_{i+1} = 2^{m-1}t_{i+1} + 2^{m-2}t_{i+2} + \dots + 2t_{i+m-1} + t_{i+m}}{2T_i = 2^m t_i + 2^{m-1}t_{i+1} + 2^{m-2}t_{i+2} + \dots + 2t_{i+m-1}}$

 $T_{i+1} = 2T_i - 2^m t_i + t_{i+m}$. The above equality implies that for each i ($1 \le i \le n-m+1$), checking if $T_i = P$ takes only O(1) time. As a result, the total runtime is = O(n).

We can convert this into a Las Vegas algorithm by brute force checking for every

"HIT". A "HIT" occurs for position i if $T_i \mod p = P \mod p$, where p is the prime number used. The worst case runtime of this algorithm is Ω (m.n).

RANDOMIZED SKIP LIST:

A randomized skip list is a data structure that can be used to realize a dictionary, i.e., a data structure that supports these three operations: SEARCH, INSERT, and DELETE.

Let S be a given ordered set. A leveling of S with r levels is a sequence : $L_r \subseteq L_{r-1} \subseteq \cdots \subseteq L_2 \subseteq L_1$ where $L_1 = S \& L_r = \Phi$

<u>Definition:</u> The level of any element x is $\ell(x) = Max$ i such that $x \in L_i$.

Definition :

An interval at any level is nothing but an interval of two successive elements. The following is an example where $S = \{2, 3, 5, 15, 17, 28, 31, 45, 62, 75\}$. Assume that the two elements $-\infty$ and $+\infty$ are members of each level. Using the intervals of the different levels we can construct a tree as shown below.

-∞			- +∞
-∞	17	45	- +x
-∞	15 17	45	
-∞ 3	15 17	45 62	- +∞
-∞ 2 3 5	15 17 2831	45 62 75	- +∞

TREE :

Definition :

For any element x, let $I_j(x)$ stand for the interval that x belongs in level j.

SEARCH(x):

Go through : $I_r(x), I_{r-1}(x), I_{r-2}(x), \dots, until the answer is found.$

TIME NEEDED : $\sum_{j=r}^{l} c(I_j(x)) \text{ where } c(I_j(x)) \text{ is the } \# \text{ of children of } I_j(x).$ Prob[level(x) = h] = $(\frac{1}{2})^{h-1}(1/2)=(1/2)^h$ Prob[level(x) > h] = $(\frac{1}{2})^{h+1}[1 + \frac{1}{2} + \frac{1}{4} + \dots] \leq (\frac{1}{2})^h$ Prob[$\exists x \text{ whose height is > h}] \leq n (\frac{1}{2})^h$ we want this to be $\leq n^{-\alpha}$ => $n^{-\alpha} = n (\frac{1}{2})^h$ => $2^h = n^{\alpha+1}$ => $h = (\alpha+1) \log(n)$ => The height of the tree is $\tilde{O}(\log n)$

What is $E\left[\sum_{j=r}^{l} c(I_j(x))\right]$?

If some node Q at level j has q children, this could only be because the elements $x_{2,...,x_{q-1}}$ were not picked to be in L_j & they were in L_{j-1} . The # of such elements (that are not in L_j) is upper bounded by a Geometric Distribution with parameter $\frac{1}{2}$. => the expected value = 2

=>
$$E[c_j(I)] = O(1)$$
 for any interval I
=> $E[\sum_{j=r}^{l} c(I_j(x))]$

$$=> (1 - n^{-\alpha})O(\log n)O(1) + n^{-\alpha}.O(n)$$
$$=> O(\log n)$$

 $E[A] = E[A / B] \Pr[B] + E[A / \overline{B}] \Pr[\overline{B}]$

INSERT(x):

Pick a random level for x. If $\ell(x) > r$ increment r by 1. Use the search algorithm to find a relevant place for x. Some of the intervals may have to be split.

Expected time = $O(\log n)$. Delete also is processed likewise.

Theorem : In a random skiplist we can perform the following operations in an expected O(log n) time : SEARCH, INSERT, and DELETE.