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Pattern Matching: 
 
INPUT : T = t1t2t3......................tn Є ∑* 

      P = p1p2p3...................pm Є ∑* 

 
OUTPUT: All the indices i such that Ti = titi+1ti+2........ti+m-1 = P 
 
Algorithm : for i= 1 to (n-m+1) do 
  check if Ti = P 
  using the previous algorithm (for checking the equality of two integers) 
  if yes, output i;  
 
Analysis : Let the prime be picked from the interval [1,k] =>  
# of such primes = Ɵ (k/log k) 
 
probability of an incorrect answer for a specific i= m/(k /log k) 
=> probability of an incorrect answer for at least one such i is ≤  n.m/(k /log k)  
 
we want this to be ≤ n-α 

 

=> n.m/(k / log k) = n-α 

 
=> m.nα+1 = k/(log k) 
 
pick k to be ( m.nα+1) log ( m.nα+1) = Ω (m.nα+1 log n). 
 
Note : Ti = 2m-1ti + 2m-2ti+1 + …........................+ 2ti+m-2 + ti+m-1 
  Ti+1 = 2m-1ti+1 + 2m-2ti+2 + …........................+ 2ti+m-1 + ti+m 
  2Ti = 2m ti + 2m-1ti+1 + 2m-2ti+2 + …................+ 2ti+m-1 
   
  Ti+1 = 2Ti – 2m ti + ti+m.  
The above equality implies that for each i (1≤i≤n-m+1), checking if Ti = P takes only 
O(1) time. 
As a result, the total runtime is = O(n). 
 
We can convert this into a Las Vegas algorithm by brute force checking for every 



“HIT”. A “HIT” occurs for position i if Ti mod p = P mod p, where p is the prime 
number used. The worst case runtime of this algorithm is Ω (m.n). 
 
RANDOMIZED SKIP LIST: 
 
A randomized skip list is a data structure that can be used to realize a dictionary, i.e., a 
data structure that supports these three operations: SEARCH, INSERT, and DELETE. 
 
Let S be a given ordered set.  
A leveling of S with r levels is a sequence : 
Lr ! Lr"1 !!! L2 ! L1  where L1 = S & Lr = Φ 
 
Definition:  
The level of any element x is  ℓ(x) = Max i such that x Є Li. 
 
Definition :  
An interval at any level is nothing but an interval of two successive elements. The 
following is an example where S = {2, 3, 5, 15, 17, 28, 31, 45, 62, 75}. Assume that the 
two elements -∞ and +∞ are members of each level. Using the intervals of the different 
levels we can construct a tree as shown below. 
 
      
 -∞----------------------------------------------------------------------------------------------- +∞ 
 
 -∞------------------------------------ 17 ------------------------- 45 ------------------------- +∞ 
 
 -∞--------------------------- 15 ----- 17 ------------------------- 45 ------------------------- +∞ 
 
 -∞------------- 3------------ 15 ----- 17 ------------------------- 45 ------ 62 -------------- +∞ 
 
 -∞----- 2 ----- 3----- 5----- 15 ----- 17 ----- 28 ------31 ------ 45 ------ 62 ------ 75 --- +∞ 
 
 
TREE :  
 
      



 
       
Definition :  
For any element x, let Ij(x) stand for the interval that x belongs in level j. 
 
SEARCH(x): 
Go through : Ir(x),Ir-1(x),Ir-2(x),.....................,until the answer is found. 
      

TIME NEEDED : ∑ 1
c(Ij(x)) where c(Ij(x)) is the # of children of Ij(x). 

   j=r   
 
Prob[level(x) = h] = ( ½)h-1(1/2)=(1/2)h 

Prob[level(x) ˃ h] = ( ½)h+1[1 + ½ + 1/4 + …... ] ≤  (½)h 

Prob[ Ǝ x whose height is > h] ≤ n (½)h 

we want this to be ≤ n-α 

=> n-α  = n (½)h 

=> 2h =  nα+1 

=> h = (α+1) log (n) 
=> The height of the tree is Õ(log n) 
 

What is  E[∑ 1
c(Ij(x))] ? 

                      j=r 
 
     



 
 
If some node Q at level j has q children, this could only be because the elements 
x2,......,xq-1 were not  picked to be in Lj & they were in Lj-1. The # of such elements (that 
are not in Lj) is upper bounded by a Geometric Distribution with parameter  ½. 
=> the expected value = 2 

=> E[cj(I)]= O(1) for any interval I 

=> E[∑ 1
c(Ij(x))]  

            j=r 
 
=> (1- n-α)O(log n)O(1) +  n-α..O(n) 
=> O(log n) 
 
E[A]= E[A / B]Pr[B]+E[A / B]Pr[B]  

 
INSERT(x): 
Pick a random level for x. If  ℓ(x) > r increment r by 1. Use the search algorithm to find 
a relevant place for x. Some of the intervals may have to be split. 
 
Expected time = O(log n). 
Delete also is processed likewise. 
 
Theorem : In a random skiplist we can perform the following operations in an expected 
O(log n) time : SEARCH, INSERT, and DELETE. 
 
 


