CSE 6512 Lecture 7 Notes
 Sudipta Pathak

September 20, 2011

Pattern Matching:

$$
\begin{aligned}
\text { INPUT : } \mathrm{T} & =\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3} \ldots \ldots \ldots \ldots \ldots \ldots \ldots . \mathrm{t}_{\mathrm{n}} \in \sum^{*} \\
\mathrm{P} & =\mathrm{p}_{1} \mathrm{p}_{2} \mathrm{p}_{3} \ldots \ldots \ldots \ldots \ldots . \mathrm{p}_{\mathrm{m}} \in \sum^{*}
\end{aligned}
$$

OUTPUT: All the indices i such that $T_{i}=t_{i} t_{i+1} t_{i+2} \ldots \ldots . . \mathrm{t}_{\mathrm{i}+\mathrm{m}-1}=\mathrm{P}$
Algorithm : for $\mathrm{i}=1$ to $(\mathrm{n}-\mathrm{m}+1)$ do check if $T_{i}=P$
using the previous algorithm (for checking the equality of two integers) if yes, output i;

Analysis : Let the prime be picked from the interval $[1, k]=>$ $\#$ of such primes $=\Theta(\mathrm{k} / \log \mathrm{k})$
probability of an incorrect answer for a specific $i=m /(k / \log k)$
$=>$ probability of an incorrect answer for at least one such i is $\leq n . m /(k / \log k)$
we want this to be $\leq \mathrm{n}^{-\alpha}$
$=>\mathrm{n} . \mathrm{m} /(\mathrm{k} / \log \mathrm{k})=\mathrm{n}^{-\alpha}$
$=>\mathrm{m} . \mathrm{n}^{\alpha+1}=\mathrm{k} /(\log \mathrm{k})$
pick k to be $\left(\mathrm{m} \cdot \mathrm{n}^{\alpha+1}\right) \log \left(\mathrm{m} \cdot \mathrm{n}^{\alpha+1}\right)=\Omega\left(\mathrm{m} \cdot \mathrm{n}^{\alpha+1} \log \mathrm{n}\right)$.
Note: $T_{i}=2^{m-1} t_{i}+2^{m-2} t_{i+1}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .+2 t_{i+m-2}+t_{i+m-1}$

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{i}+1}=2^{\mathrm{m}-1} \mathrm{t}_{\mathrm{i}+1}+2^{\mathrm{m}-2} \mathrm{t}_{\mathrm{i}+2}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots+2 \mathrm{t}_{\mathrm{i}+\mathrm{m}-1}+\mathrm{t}_{\mathrm{i}+\mathrm{m}} \\
& 2 \mathrm{~T}_{\mathrm{i}}=2^{\mathrm{m}} \mathrm{t}_{\mathrm{i}}+2^{\mathrm{m}-1} \mathrm{t}_{\mathrm{i}+1}+2^{\mathrm{m}-2} \mathrm{t}_{\mathrm{i}+2}+\ldots \ldots \ldots \ldots \ldots \ldots . .+2 \mathrm{t}_{\mathrm{i}+\mathrm{m}-1} \\
& \\
& \mathrm{~T}_{\mathrm{i}+1}=2 \mathrm{~T}_{\mathrm{i}}-2^{\mathrm{m}} \mathrm{t}_{\mathrm{i}}+\mathrm{t}_{\mathrm{i}+\mathrm{m}} .
\end{aligned}
$$

The above equality implies that for each $\mathrm{i}(1 \leq \mathrm{i} \leq \mathrm{n}-\mathrm{m}+1)$, checking if $\mathrm{T}_{\mathrm{i}}=\mathrm{P}$ takes only $\mathrm{O}(1)$ time.
As a result, the total runtime is $=\mathrm{O}(\mathrm{n})$.
We can convert this into a Las Vegas algorithm by brute force checking for every
"HIT". A "HIT" occurs for position if $T_{i} \bmod p=P \bmod p$, where p is the prime number used. The worst case runtime of this algorithm is Ω (m.n).

RANDOMIZED SKIP LIST:

A randomized skip list is a data structure that can be used to realize a dictionary, i.e., a data structure that supports these three operations: SEARCH, INSERT, and DELETE.

Let S be a given ordered set.
A leveling of S with r levels is a sequence :
$L_{r} \subseteq L_{r-1} \subseteq \cdots \subseteq L_{2} \subseteq L_{1}$ where $\mathrm{L}_{1}=\mathrm{S}$ \& $\mathrm{L}_{\mathrm{r}}=\Phi$

Definition:

The level of any element x is $\ell(x)=$ Max i such that $x \in L_{i}$.
Definition :
An interval at any level is nothing but an interval of two successive elements. The following is an example where $\mathrm{S}=\{2,3,5,15,17,28,31,45,62,75\}$. Assume that the two elements $-\infty$ and $+\infty$ are members of each level. Using the intervals of the different levels we can construct a tree as shown below.

TREE:

Definition:

For any element x , let $\mathrm{I}_{\mathrm{j}}(\mathrm{x})$ stand for the interval that x belongs in level j .

SEARCH(x):

Go through : $\mathrm{I}_{\mathrm{r}}(\mathrm{x}), \mathrm{I}_{\mathrm{r}-1}(\mathrm{x}), \mathrm{I}_{\mathrm{r}-2}(\mathrm{x})$, \qquad ,until the answer is found.

TIME NEEDED : $\sum_{\mathrm{j}=\mathrm{r}}^{1}{ }_{\mathrm{c}}\left(\mathrm{I}_{\mathrm{j}}(\mathrm{x})\right)$ where $\mathrm{c}\left(\mathrm{I}_{\mathrm{j}}(\mathrm{x})\right)$ is the \# of children of $\mathrm{I}_{\mathrm{j}}(\mathrm{x})$.
$\operatorname{Prob}[\operatorname{level}(\mathrm{x})=\mathrm{h}]=(1 / 2)^{\mathrm{h}-1}(1 / 2)=(1 / 2)^{\mathrm{h}}$
$\operatorname{Prob}[\operatorname{level}(x)>h]=(1 / 2)^{h+1}[1+1 / 2+1 / 4+\ldots \ldots] \leq(1 / 2)^{h}$
$\operatorname{Prob}[\exists \mathrm{G}$ whose height is $>\mathrm{h}] \leq \mathrm{n}(1 / 2)^{\mathrm{h}}$
we want this to be $\leq \mathrm{n}^{-\alpha}$
$\Rightarrow \mathrm{n}^{-\alpha}=\mathrm{n}(1 / 2)^{\mathrm{h}}$
$\Rightarrow 2^{\mathrm{h}}=\mathrm{n}^{\mathrm{a}+1}$
$\Rightarrow \mathrm{h}=(\mathrm{\alpha}+1) \log (\mathrm{n})$
$=>$ The height of the tree is $\tilde{O}(\log n)$
What is $\mathrm{E}\left[\sum_{\mathrm{j}=\mathrm{r}}^{1} \mathrm{c}\left(\mathrm{I}_{\mathrm{j}}(\mathrm{x})\right)\right]$?

If some node Q at level j has q children, this could only be because the elements $\mathrm{x}_{2}, \ldots \ldots . . \mathrm{x}_{\mathrm{q}-1}$ were not picked to be in L_{j} \& they were in $\mathrm{L}_{\mathrm{j}-1}$. The \# of such elements (that are not in L_{j}) is upper bounded by a Geometric Distribution with parameter $1 / 2$.
$\Rightarrow>$ the expected value $=2$
$\Rightarrow E\left[c_{j}(\mathrm{I})\right]=\mathrm{O}(1)$ for any interval I
$\Rightarrow E\left[\sum_{j=r}{ }^{1}\left(I_{j}(x)\right)\right]$
$=>\left(1-\mathrm{n}^{-\alpha}\right) \mathrm{O}(\log \mathrm{n}) \mathrm{O}(1)+\mathrm{n}^{-\mathrm{d}} . \mathrm{O}(\mathrm{n})$
$=>$ O(log $n)$

$$
E[A]=E[A / B] \operatorname{Pr}[B]+E[A / \bar{B}] \operatorname{Pr}[\bar{B}]
$$

INSERT(x):

Pick a random level for x. If $\ell(x)>r$ increment r by 1 . Use the search algorithm to find a relevant place for x . Some of the intervals may have to be split.

Expected time $=O(\log n)$.
Delete also is processed likewise.
Theorem : In a random skiplist we can perform the following operations in an expected $\mathrm{O}(\log \mathrm{n})$ time : SEARCH, INSERT, and DELETE.

