CSE6512: Randomization in Computing

Lecture 5, Sep 13 2011.

Notes by Maryam Shokrniafard

Fingerprinting techniques are used to verify equality of two objects. (obj₁ $\stackrel{?}{=}$ obj₂)

Example1:

Input: three n×n matrices A,B and C

Output: "yes" if AB=C

"no" otherwise.

Fact: This problem can be solved in $O(n^{2.376})$ time using the best known deterministic matrix multiplication algorithm.

By using fingerprinting technique, we can solve this problem more efficiently.

A randomized algorithm 1 (Monte Carlo)

Pick a random vector $r=[r_1,r_2,...,r_n]$ where r_i is from $\{0,1\}$ $\{r_1,...,r_n\}$ are picked using a 2-sided fair coin)

Check if A(Br) = Cr.

End of alg.

Fact: if AB \neq C then prob.[A(Br)= Cr] $\leq \frac{1}{2}$

Proof:

Let D=AB-C

Assume that D≠0. This means that there exists at least one non-zero row in D.

Without loss of generality, let this row be $[d_1, d_2, ..., d_k, 0, ..., 0]$ where $k \ge 1$. Obviously we get

Prob.[Dr=0 | D \neq 0] \leq prob.[$\sum_{i=1}^{k} d_i \times r_i = 0 | D \neq 0$]

RHS
$$\leq$$
 prob. $\left[r_1 = \frac{-\sum_{i=2}^k d_i \times r_i}{d_1} \mid D \neq 0\right]$

We can employ the principle of deferred decisions here. In particular, assume that we have already chosen r_2 , .., r_n , and now we are fixing the value of r_1 .

Since $r_1 \in \{0,1\}$, we can see that the above probability is $\leq \frac{1}{2}$.

A better algorithm for this problem would be:

Algorithm 2

For i=1 to α logn do

Pick a random $r \in \{0, 1\}^n$

If A (Br) \neq Cr then output "AB \neq C" and quit

End for

Output: "AB=C"

End of alg.

Probability that the above algorithm gives an incorrect answer is $\leq \left(\frac{1}{2}\right)^{\alpha \log n} = n^{-\alpha}$

 \Rightarrow run time of the algorithm is $O(n^2 \log n)$.

Example 2.

Input: two degree-n polynomials $p_1(x)$, $p_2(x)$ and one 2n-degree polynomial $p_3(x)$

Output: "yes" if $p_1(x) \times p_2(x) = p_3(x)$ and "no" otherwise.

Fact: we can solve this problem using DFT in $O(n \log n)$ time.

A Randomized algorithm

Let S be a subset of the field F s.t |S| > 2n

Let
$$Q(x)=p_1(x) \times p_2(x)-p_3(x)$$

Pick a random $r \in S$

If Q(r) = 0 output "yes"

Else output "no"

End of alg.

Analysis:

If $p_1(x) \times p_2(x) = p_3(x)$, the algorithm will never give an correct answer. On the other hand, if $p_1(x) \times p_2(x) \neq p_3(x)$, the algorithm might give an incorrect answer. This algorithm has one-sided error.

Now we show that the probability that the algorithm gives an incorrect answer is very low: In particular, we'll show that Prob.[Q(r)=0 | Q(x) $\neq 0$] $< n^{-\alpha}$.

Note: Q(x) is a degree-2n polynomial and hence it has at most 2n distinct zeros.

$$\Rightarrow$$
 Prob[Q(r)=0 | Q(x) \neq 0] $\leq \frac{2n}{|S|}$. We want this to be low.

$$\Longrightarrow \frac{2n}{|s|} \le n^{-\alpha}$$
. This will happen if

$$|s| > 2n^{\alpha+1}$$
.

Example 3.

Input: A multivariate polynomial on n variables $Q(x_1, x_2, ..., x_n)$

Output: "yes" if $Q(x_1, x_2, ..., x_n) \equiv 0$ "no" otherwise

Definitions:

- 1. Degree of a term is the sum of exponents of the variables in the term.
- 2. Total degree of $Q(x_1, x_2,..., x_n)$ is the maximum degree of its terms.

Theorem: (Schwartz & Zippel)

Let S be a subset of the field F and let $r_1, r_2, ..., r_n$ be random elements from S. Then, prob. $[Q(r_1, r_2, ..., r_n) = 0 \mid Q(x_1, x_2, ..., x_n) \not\equiv 0] \le \frac{d}{|s|}$ where d is the total degree of $Q(x_1, x_2, ..., x_n)$.

Fact: Prob.[A] \leq prob.[A| \overline{B}]+prob.[B] since prob.[A]=prob.[A|B] prob.[B] + prob.[A| \overline{B}] prob.[\overline{B}] \leq prob.[A| \overline{B}]+prob.[B]

Proof:

We use induction on n.

Base case: The theorem holds for n=1 (proof is given in example 2).

Induction step: Assume that the theorem holds for up to n-1 variables. We show that it holds for n variables as well.

Let
$$Q(x) = \sum_{i=0}^{k} x_1^i Q_i(x_2, x_3, ..., x_n)$$
 where $k \le d$.

 $\Longrightarrow Q_k(x_2,x_3,...,x_n)\not\equiv 0$ and the total degree of $Q_k(x_2,x_3,...,x_n)\leq d$ -k.

By induction hypothesis, we get

Prob.[
$$Q_k(r_2,r_3,...,r_n)=0$$
] $\leq \frac{d-k}{|s|}$ -----(1)

Let
$$Q(x_1, r_2, ..., r_n) = q(x_1) = \sum_{i=0}^k x_1^i Q_i(r_2, r_3, ..., r_n)$$

Prob.[q(r₁)=0|
$$Q_k(r_2,r_3,...,r_n) \neq 0$$
] $\leq \frac{k}{|s|}$ -----(2)

Let A be the event

$$Q(r_1,r_2,...,r_n)=0$$

Let B be the event

$$Q_k(r_2,...,r_n)=0$$

Using the fact prob.[A] < prob.[A] \overline{B}] + prob.[B]

We get (from Equations 1 and 2)

Prob.[Q(
$$r_1, r_2, ..., r_n$$
)=0 | Q($x_1, x_2, ..., x_n$) $\not\equiv 0$ } \leq

$$Prob. \left[\ Q(r_1, r_2, ..., r_n) = 0 \ | \ Q_k(r_2, ..., r_n) \neq 0 \ \right] + prob. \left[Q_k(r_2, ..., r_n) = 0 \right] \leq \frac{d-k}{|s|} + \frac{k}{|s|} \leq \frac{d}{|s|}$$