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MARKOV’S INEQUALITY

Let X be any non negative random variable with a mean , then probability
1 .
[X = au] < = for any non negative real number a

Proof:
Letf(x) =1if x = au
= (0 otherwise

X
Note: f(x) < "

Probability [X = au] = E[f(X)]

= prob.[X = au] = E[f(X)] < Ea) _ 1

ap a
CHEBYSHEV’S INEQUALITY

Let X be a random variable with a mean Y and std. deviation o, then
probability [[x — u| = ao] < %; for any non negative real number a.

Proof:
Probability [|x — u| = ac] = prob. [(x — p)? = a?c?]
E(x-p)* 1

Using Markov’s inequality, the right hand side < gz g7

CHERNOFF BOUNDS

A Bernoulli trials has two outcomes success and failure, with
prob.[success]=p and prob.[failure]=(1-p).

A binomial random variable with parameters n & p refers to the number of
successes in n independent Bernoulli trails, the success prob. being p.
Notation: X = B(n,p)

Lemmal

u=np
If X = B(n,p)then

.2
prob.[X = (1 +€)np] < exp( Egnp> S @
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.2
prob.[X < (1 —¢€)np] < exp( Eznp> S 02

m

n
prob.[X = m] < exp (;p) SR )|

foranym >npand forany 0 <e < 1.

Example:

Flip a 2-side coin 1000 times.
Let X= numbers of heads, p = 1

= u =500,0 =+np(1—p)=v250 =15.811

We would like to know the prob.[X = 600].

Prob.[X = (Dp'@-p)"*
- Usmg Markov’s inequality, prob. [X = 600] < % =-=0.83.....(4)
- Using Chebyshev’s inequality
2=6.32, the prob.[X = 600] < —— = 0.025 ... e e e e e e (5)

- Using Chernoff’s bound
(1+¢e)np =600
= (1+ )_% 12 = =02
Using ineq. (1) in Chernoff’s bound:

Prob [X = 600] < exp (_0'04XS0) =

exp (=2) = 0.0013

Fact 1:
Let X be a binomial with mean u then,

prob.[X = p+ /3 «< plog,n] <n=
= (1+6e)u=pu+,3cxulog,n

3l
o [3xlogen
U

Using fact (1): prob.[X = (1 + €)u] < exp [M “] =n"*
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Fact 2:
Let X be a binomial with mean u then prob. [X <u-— \/2 x ulog, n] <n~*
This can be proven in a similar manner.

Lemma 2:

Let X be any sequence of n elements and let S be a random sample from X with
|S|=s. Let

Rank(w,S) = j,and rank(w,X) = r;.

n n
Then, prob. [|rj —jg| > 4 E,/logn] <n%

Proof:
Let Y be any subset of X with |Y| =y

The expected numbers of sample keysin Y = B(y, i)
Using Fact 1, the actual number of sample keys in Y is no more than

yf + \/3 e .¥loge n with prob. > (1 — n™).

Similarly, with the same probability, the number of sample keys is > yf —

\/3 oc%loge n.

Let Y be the smallest g elements of X. If the number of sample keys in
Yis = j,thenr; < q. Also, if Y has < j sample keys then r; = q.

Letg =j§+g,/4 x jlog,n

Using Fact 2, the expected number of sample keys in this setY =j +

J4«jlog,n
Using Fact 1, the actual number of sample keys is>j + /4 « jlog,n —

\/3 « (j + /4 « jlog, n)log, n with

prob.> ((1 —n"%).RHS = j

n n
=1 gj;+;,/4ocjlogen
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. n n
S];+\/—§,/4oclogen

Similarly, we can show thatr; = j Z-
8

S‘/4 « log, n.

fls

PRINCIPLE OF DEFERRED DECISIONS
Clock Solitaire Game
A solitaire game is played with cards:

» Split a pack of cards into 13 groups of 4 cards and label the groups as
{A2,3,....,10,],Q,K]}.

A 2 3 10 ] Q K

» Draw a card from K; if you see i go to group i and draw a card; if that is
j draw a card from j.

» Repeat in the same manner until the game ends. The game ends when
we try to draw from an empty group. If all the cards have been drawn
when the game ends you win; if not you lose.

What is the probability you win?

This probability computation will be complex if we look at all possible
distribution of cards into 13 groups. Instead notice that the game ends when
we try to draw from the group K. This is because only this group has 3 cards
to begin with (after the first card is drawn). If the 52nd card drawn is a K,
then the game is won. The probability of this happening is 1/13.

The principle of deferred decisions is to not assume that the entire set of

random choices is made in advance. Rather, at each step of the process, we
only fix the random choices that must be revealed to the process.

Randomization in Computing: Lecture 4-Notes | 5





