
Transcript of Lecture 3 of CSE 6512.

Saad Quader

September 6, 2011

1 Recap

1.1 Frazer and McKellar’s Samplesort algorithm.

1. Pick a sample S of size s.

2. Sort S into l1, l2, · · · ls.

3. Partition X into s+ 1 groups Xi using members of sorted S such that

X1 = {x ∈ X|x ≤ l1}, (1)

Xi = {x ∈ X|li−1 < x ≤ li}, ∀2 ≤ i ≤ s, (2)

and
Xs+1 = {x ∈ X|x > ls}. (3)

4. Sort each Xi using any asymptotically optimal sorting algorithm, e.g.,
Heapsort or Mergesort. This is a variation from the original paper which
used Samplesort in recursion.

5. Output X1 in sorted order, followed by X2 in sorted order, . . ., and Xs+1

in sorted order.

1.2 Sampling Lemma

Lemma 1 Let n be the input size, and s be the sample size. Then, the size of
each partition Xi (described above) is Õ

(
n
s log n

)
.

2 Selection Problem

Input. X = k1, k2, · · · , kn, a sequence of n distinct keys and i, an integer ≤ n
and ≥ 1.

Output. The i-th smallest element of X.

1

Figure 1: Partitioning of X by the Select algorithm.

3 Select Algorithm

Step 1.

Pick a pivot k ∈ X .

Step 2.

Partition X into two subsets X1 and X2 such that

X1 = {x ∈ X|x < k} (4)

and
X2 = {x ∈ X|x > k} . (5)

Figure 1 shows this partition. The partition takes n comparisons.

Step 3.

Count the elements in X1 and X2.

Case 1.

If |X1| = i− 1 then output k.

Case 2.

If |X1| ≥ i then output Select(i,X1).

Case 3.

Otherwise, output Select(i− |X1| − 1, X2).

2

Fact.

The average run time of Select is O(n).

Fact.

We can convert Select into a Las Vegas algorithm, with an expected run time
of O(n), where the expectation is computed in the space of all possible outcomes
for coin flips (and not the space of all possible inputs).

4 A Worst-case Linear-time Deterministic Se-
lection Algorithm

This algorithm was proposed by Blum, Floyd, Pratt, Rivest, and Tarjan (1971).
It is the same as Select except that the pivot element is picked in the following
way:

1. Partition X into groups of 5 elements each.

2. Find the median of each of these groups.

3. Find M, the median of these medians.

4. Use M as the pivot element.

Fact.

It M is used as the pivot in Select, it is easy to see that |X1| ≤ 7n
10 and

|X2| ≤ 7n
10 .

Total Run Time.

T (n) = Θ(n) + T
(n

5

)
+ T

(
7n

10

)
. (6)

Θ(n) is required for finding the group medians and for partitioning X into X1

and X2. T
(
n
5

)
is required to find the median of medians, and the last term is

for the recursive call (on either X1 or X2).

5 A Randomized Selection Algorithm

It is an extension of Select and Samplesort, proposed by Floyd and Rivest
(1975).

Input: X = k1, k2, · · · , kn, a sequence of n distinct keys; i, an integer.
Output: The i-th smallest element of X.

3

Algorithm Outline

Pick a random sample S, made up of s elements from X. Let l1, l2 ∈ S such
that l1 < l2 and the i-th smallest element in X will be between l1 and l2 with
high probability. If this condition is satisfied, we would discard all the elements
that fall outside the interval [l1, l2]. Question: how to find l1 and l2, and what
is the probability that the i-th smallest element will be in the said interval?

l1 and l2 could be trivially chosen as the minimum and maximum element
of X, respectively; but this is not good enough; l1 and l2 should be as close as
possible to each other so that we could discard as many elements as possible in
each step.

Let q be the i-th element of X. This is the same as saying that the rank of
q in X is (very nearly) i.

Definition 1 Rank of any element x ∈ X :

Rank(x,X) = |{u ∈ X|u < x}|+ 1 (7)

Note.

Number of items < q in X = i− 1.
Expected number of items < q in S = s

n (i− 1).
We will have to find a relationship, with high probability, between the rank

of an element in S and that of the same element in X.
For any element w, if Rank(w, S) = j then

E[Rank(w,X)] =
n

s
j . (8)

Let rj = Rank(w,X). The following lemma gives the sought relationship
with a high probability bound.

Lemma 2 (Rajasekaran & Reif, 1985)

Prob.

[∣∣∣rj − j n
s

∣∣∣ > √4α
n√
s

√
log n

]
< n−α (9)

Lemma 2 gives a lower bound on the probability that the i-th smallest el-
ement will be between elements l1 and l2. The proof of this lemma will be
provided in the next lecture.

Let [a1, b1] be a high probability confidence interval for the rank of l1 in
X (according to Lemma 2). Also, let [a2, b2] be a high probability confidence
interval for Rank(l2, X). Figure 2 shows these intervals.

Algorithm

In order to find the i-th smallest element in X,

1. Pick a random sample S, where |S| = s.

4

Figure 2: High probability confidence intervals for Rank(l1, X) and
Rank(l2, X).

2. Pick two elements l1, l2 ∈ S such that

Rank(l1, S) = i
s

n
− δ (10)

and
Rank(l2, S) = i

s

n
+ δ (11)

where
δ = c

√
s log n (12)

where c is a constant >
√

4α (for example
√

5α).

We could sort S in O(s log s) time and find l1 and l2. However, if we use
the linear time selection algorithm, it would take O(s) time.

3. Find Y , the set of elements in X between l1 and l2.

Y = {u ∈ X|l1 ≤ u ≤ l2} . (13)

Let n1 be the number of elements less than l1 and n2 be the cardinality
of Y : n1 = |{u ∈ X|u < l1}|, n2 = |Y |. If i > n1 and i ≤ (n1 + n2) then
we will have the i-th smallest element in Y . However, it might not be the
case if the sample is bad. In that case, we will start over. (We will have
to calculate the probability of such starting over, and have to show that
it is very small.)

Otherwise,

4. If the i-th smallest element is in Y , identify and output the (i − n1)th
smallest element in Y .

6 Time Complexity of the Randomized Selec-
tion Algorithm

Steps 1, 2, and 4

Step 1.

O(s)

5

Step 2.

O(s)

Step 4.

O(|Y |)

Step 3

In first consideration, we will need 2 comparisons for each element of X to
determine whether it is in Y . (In total, 2n comparisons. Too bad.) We will
have to do better.

There are two questions regarding Y :

Q1. Size of Y

Q2. Probability that the i-th smallest element is in Y

By substituting value of δ from Equation 12 in Equation 10 and using Equa-
tion 8, we can derive that

E[Rank(l1, X)] = i− c n√
s

√
log n (14)

and
E[Rank(l2, X)] = i+ c

n√
s

√
log n (15)

Using Equation 14, we find that

a1 =

(
i− c n√

s

√
log n

)
−
√

4α
n√
s

√
log n (16)

and

b1 =

(
i− c n√

s

√
log n

)
+
√

4α
n√
s

√
log n (17)

Similarly, using Equation 14 and Lemma 2 we find that

a2 =

(
i+ c

n√
s

√
log n

)
−
√

4α
n√
s

√
log n (18)

and

b2 =

(
i+ c

n√
s

√
log n

)
+
√

4α
n√
s

√
log n (19)

Note.

If c >
√

4α then the i-th smallest element of X will be in Y with high probability.

6

Figure 3: i ≥ n
2

Determination of the size of Y .

Let [a1, b] and [a2, b2] be high probability confidence intervals for Rank(l1, X)
and Rank(l2, X), respectively. Then,

|Y | = b2 − a1
= 2c

n√
s

√
log n+ 2

√
4α

n√
s

√
log n

= 2
n√
s

√
log n

(
c+
√

4α
)

(20)

with probability ≥ (1− n−α) .

Choosing sample size, |S|.

Try to keep |S| equal to the order of |Y |. Pick |S| = n2/3. In that case, with
probability ≥ (1− n−α), the size of Y becomes

|Y | = 2n2/3
√

log n(c+
√

4α)

= O
(
n2/3

√
log n

)
, (21)

Comparing the input keys with l1 and l2.

Case 1: i ≥ n
2

Figure 3 depicts this situation. In this case, compare any key first with l1,
and then with l2 only if needed. Therefore, one comparison for keys ≤ l1, and
possibly two comparisons for other keys. Number of comparisons

= (i+ õ(n)) + 2(n− i). (22)

The first term, i, overshoots the actual number of single comparisons by
i − Rank(l1, X) which is much smaller than n; hence comes the second term
õ(n). Rearranging, we get the number of comparisons

= i+ 2(n− i) + õ(n)

= n+ (n− i) + õ(n)

= n+Min{i, n− i}+ õ(n) . (23)

7

Figure 4: i < n
2

Because i > n
2 , Min{i, n− i} will be equal to (n− i).

Case 2: i < n
2

Figure 4 depicts this situation. In this case, compare each key first with l2;
then if needed, with l1. Number of comparisons

= ((n− i) + õ(n)) + 2i

= n+Min{i, n− i}+ õ(n) . (24)

Because i < n
2 , Min{i, n− i} will be equal to i.

Total Run Time

The total run time for the above algorithm is shown below. (Each term denotes
the run time of a step.)

T (n) = O (|S|) +O (|S|) + (n+Min{i, n− i}+ õ (n)) +O (|Y |)

= O
(
n2/3

)
+O

(
n2/3

)
+ (n+Min{i, n− i}) + Õ

(
n2/3

√
log n

)
= O(n) +Min{i, n− i}+ Õ

(
n2/3

√
log n

)
(25)

Thus, the expected run time of the randomized version is linear. Moreover, this
is very close to the theoretical lower bound stated by the following theorem.

Theorem 1 Finding the i-th smallest element from a sequence of n elements
needs n+Min{i, n− i} comparisons in the worst case.

8

