CSE6512 Class Lecture 26

Prepared By: Subrata Saha

Lemma: Packet routing in 2-dimentional mesh can be done in $3 n+\tilde{o}(\mathrm{n})$ steps. The queue size is $\tilde{O}(\log n)$.

Proof: Consider a 3-phase algorithm as follows:

\%			
	(i, j)		
	First Phase		
	Second Phase		Third Phase
		\%	(k, l)

Consider a packet π whose origin is (i, j) and whose destination is $(\mathrm{k}, 1)$.
Phase 1: Packet π chooses a random node (i^{\prime}, j) in the column of its origin and goes there.

Phase 2: π traverses along row i' up to ($i^{\prime}, 1$). Furthest origin first Q.D. is used.
Phase 3: π traverses along column 1 up to ($k, 1$). Furthest destination first Q.D. is employed.

Analysis:

Phase 1: corresponds to Problem 1 (see prev. lecture). The time taken is $\leq n$.

Phase 2: Number of packets ending up at (i^{\prime}, j) at the end of phase 1 is $B(n$, 1/n).
\Rightarrow Total number of packets in the nodes (i', 1), (i', 2), ..., (i', j) at the end of the Phase 1 is $B(j n, 1 / n)$
\Rightarrow Using Chernoff bounds, this number is $(\mathrm{j}+\tilde{\mathrm{o}}(\mathrm{j}))$
\Rightarrow Phase 2 corresponds to Problem 3 (see previous lecture).
\Rightarrow Runtime of Phase 2 is ($\mathrm{n}+\mathrm{o}(\mathrm{n})$).
Phase 3: In this phase every packet is in its correct column.
\Rightarrow Phase 3 corresponds to Problem 2 (see previous lecture).
\Rightarrow Phase 3 takes $\leq \mathrm{n}$ steps.
In summary, the total runtime of the algorithm is $3 n+\tilde{o}(n)$.

Queue Size:

Observation: The queue size in any phase is max \{queue size at the beginning, queue size at the end\}.

Phase 1: Queue size at the beginning is 1 and at the end is $B(n, 1 / n)$
\Rightarrow Queue size in Phase 1 is $\tilde{O}(\log n)$.
Phase 2: At the beginning the queue size is $\tilde{O}(\log n)$. At the end, the queue size is also $\tilde{O}(\log n)$.
\Rightarrow Queue size in Phase 2 is $\tilde{O}(\log n)$.
Phase 3: At the end, the queue size is 1 .
Thus, the queue size for the entire algorithm is $\tilde{O}(\log n)$.

A $(2+\varepsilon) n+\tilde{o}(n)$ time algorithm for any $\varepsilon>0$

Description: Partition the mesh into slices of size ε n rows each. Consider a packet π whose origin is (i, j) and whose destination is (k, l).

Phase 1: The packet π picks a random node ($\mathrm{i}^{\prime}, \mathrm{j}$) in the column of its origin and within its slice of origin.

Phase 2: π traverses along row i' up to column 1.
Phase 3: π_{-}traverses along column 1 up to row k.
Analysis: The number of packets at $\left(i^{\prime}, j\right)$ at the end of Phase 1 is $B(\varepsilon n, 1 / \varepsilon n)$.
\Rightarrow Phase 1 takes $\leq \varepsilon$ n steps.
Phase 2: Phase 2 takes ($\mathrm{n}+\mathrm{o}(\mathrm{n})$) steps.
Phase 3: Phase 3 takes $\leq n$ steps.

Total Runtime $=(2+\varepsilon) n+\tilde{o}(n)$.
Queue Size: It is possible that all the packets destined for some column j could be in the same slice at the beginning. This means that the queue size could be $\geq(1 / \varepsilon)$. Thus the queue size of the algorithm is $\tilde{O}(1 /+\log n)$. If a queue size of $\tilde{O}(\log n)$ is desired, then ε has to be $\Omega(1 / \log n)$. This in turn will mean that the runtime of the algorithm $=2 n+\tilde{O}(n / \log n)$.

A better Algorithm

A $(2 n+\tilde{O}(\log n))$ steps $\tilde{O}(1)$ queue size algorithm has been given by (Rajasekaran and Tsantilas 1987). We divide the mesh as follows. Packets originating from the S and I regions are called superior packets and inferior packets, respectively.

Algorithm for inferior packets:

This is the same as the $(2+\varepsilon) n+\tilde{o}(\mathrm{n})$ time algorithm described above.

Algorithm for superior packets:

Each node (i, j) in the upper two S squares chooses a random k in $(2 \varepsilon n+1,2 \varepsilon n$ $+2, \ldots, 2 \varepsilon n+(1 / 4) n$) and sends its packet, q, to (k, j) along column j. If (r, s) is the destination of q, q is then sent to (k, s) along row k and finally along
column s to (r, s). Each node (i, j) in the lower two S squares chooses a random b in $\{n-2 \varepsilon n-1, n-2 \varepsilon n-2, \ldots, n-2 \varepsilon n-(1 / 4) n)$ and sends its packet to (k, j) along column j . The packet is then sent to (k, s) along row k and to $(\mathrm{r}$, s), the packet's destination, along column s .

Queue Disciplines:

- In phases 1 and 3 no distinction is made between superior and inferior packets.
- If a packet doing its phase 1 and a packet doing its phase 3 contend for the same edge, the packet doing its phase 1 takes precedence.
- Furthest destination first priority scheme is used for phase 3.

Shear Sort

The Shear sort is for mesh architectures. A lower bound on the sorting time on a $\sqrt{n} \sqrt{n}$ mesh is $\Omega(\sqrt{n})$ since it takes $2(\sqrt{n}-1)$ steps to move a key from the top left corner to the bottom right corner.

The Shear sort uses $(\log n+1)$ phases. In odd phases $(1,3,5 \ldots)$ the following is done:

- Even rows - the row is sorted with the smallest number placed at the right.
- Odd rows - the row is sorted with the smallest number placed at the left.

In even phases $(2,4,6, \ldots)$ the following is done:

- Each column is sorted independently with the smallest number placed at the top.

Sorting of rows and columns requires \sqrt{n} time to complete using for example the odd-even transposition sort. The total time is then $\sqrt{n}(\log \mathrm{n}+1)$. There are other mesh sorting algorithms whose asymptotic run times match the lower bound.

