CSE6512 Class Lecture 26

Prepared By: Subrata Saha

Lemma: Packet routing in 2-dimentional mesh can be done in $3n + \tilde{o}(n)$ steps.

The queue size is $\tilde{O}(\log n)$.

Proof: Consider a 3-phase algorithm as follows:

5			
	(i, j)		
	First Phase		
	Second Phase		Third Phase
		57	(k, l)

Consider a packet π whose origin is (i, j) and whose destination is (k, l).

Phase 1: Packet π chooses a random node (i', j) in the column of its origin and goes there.

Phase 2: π traverses along row i' up to (i', l). Furthest origin first Q.D. is used.

Phase 3: π traverses along column l up to (k, l). Furthest destination first Q.D. is employed.

<u>Analysis:</u>

Phase 1: corresponds to Problem 1 (see prev. lecture). The time taken is $\leq n$.

Phase 2: Number of packets ending up at (i', j) at the end of phase 1 is B(n, 1/n).

 \Rightarrow Total number of packets in the nodes (i', 1), (i', 2), ..., (i', j) at the end of the Phase 1 is B(jn, 1/n)

 \Rightarrow Using Chernoff bounds, this number is (j + $\tilde{o}(j)$)

 \Rightarrow Phase 2 corresponds to Problem 3 (see previous lecture).

 \Rightarrow Runtime of Phase 2 is (n + $\tilde{o}(n)$).

Phase 3: In this phase every packet is in its correct column.

 \Rightarrow Phase 3 corresponds to Problem 2 (see previous lecture).

 \Rightarrow Phase 3 takes \leq n steps.

In summary, the total runtime of the algorithm is $3n + \tilde{o}(n)$.

Queue Size:

Observation: The queue size in any phase is max {queue size at the beginning, queue size at the end}.

Phase 1: Queue size at the beginning is 1 and at the end is B(n, 1/n)

 \Rightarrow Queue size in Phase 1 is $\tilde{O}(\log n)$.

Phase 2: At the beginning the queue size is $\tilde{O}(\log n)$. At the end, the queue size is also $\tilde{O}(\log n)$.

 \Rightarrow Queue size in Phase 2 is $\tilde{O}(\log n)$.

Phase 3: At the end, the queue size is 1.

Thus, the queue size for the entire algorithm is $\tilde{O}(\log n)$.

<u>A $(2 + \epsilon)n + \tilde{o}(n)$ time algorithm for any $\epsilon > 0$ </u>

Description: Partition the mesh into slices of size ε n rows each. Consider a packet π whose origin is (i, j) and whose destination is (k, l).

Phase 1: The packet π picks a random node (i', j) in the column of its origin and within its slice of origin.

Phase 2: π traverses along row i' up to column l.

Phase 3: π_traverses along column l up to row k.

Analysis: The number of packets at (i', j) at the end of Phase 1 is $B(\varepsilon n, 1/\varepsilon n)$.

 \Rightarrow Phase 1 takes $\leq \varepsilon$ n steps.

Phase 2: Phase 2 takes $(n + \tilde{o}(n))$ steps.

Phase 3: Phase 3 takes \leq n steps.

Total Runtime = $(2 + \varepsilon)n + \tilde{o}(n)$.

Queue Size: It is possible that all the packets destined for some column j could be in the same slice at the beginning. This means that the queue size could be $\geq (1/\epsilon)$. Thus the queue size of the algorithm is $\tilde{O}(1/\epsilon + \log n)$. If a queue size of $\tilde{O}(\log n)$ is desired, then ϵ has to be $\Omega(1/\log n)$. This in turn will mean that the runtime of the algorithm = $2n + \tilde{O}(n/\log n)$. \Box

A better Algorithm

A $(2n + \tilde{O}(\log n))$ steps $\tilde{O}(1)$ queue size algorithm has been given by (*Rajasekaran and Tsantilas 1987*). We divide the mesh as follows. Packets originating from the S and I regions are called superior packets and inferior packets, respectively.

Algorithm for inferior packets:

This is the same as the $(2 + \varepsilon)n + \tilde{o}(n)$ time algorithm described above.

Algorithm for superior packets:

Each node (i, j) in the upper two S squares chooses a random k in $(2\epsilon n + 1, 2\epsilon n + 2, ..., 2\epsilon n + (1/4)n)$ and sends its packet, q, to (k, j) along column j. If (r, s) is the destination of q, q is then sent to (k, s) along row k and finally along

column s to (r, s). Each node (i, j) in the lower two S squares chooses a random b in $\{n - 2\epsilon n - 1, n - 2\epsilon n - 2, ..., n - 2\epsilon n - (1/4)n\}$ and sends its packet to (k, j) along column j. The packet is then sent to (k, s) along row k and to (r, s), the packet's destination, along column s.

Queue Disciplines:

- In phases 1 and 3 no distinction is made between superior and inferior packets.
- If a packet doing its phase 1 and a packet doing its phase 3 contend for the same edge, the packet doing its phase 1 takes precedence.
- Furthest destination first priority scheme is used for phase 3.

<u>Shear Sort</u>

The Shear sort is for mesh architectures. A lower bound on the sorting time on a \sqrt{n} \sqrt{n} mesh is $\Omega(\sqrt{n})$ since it takes $2(\sqrt{n}-1)$ steps to move a key from the top left corner to the bottom right corner.

The Shear sort uses (log n + 1) phases. In odd phases (1, 3, 5 ...) the following is done:

- Even rows the row is sorted with the smallest number placed at the right.
- Odd rows the row is sorted with the smallest number placed at the left.

In even phases (2, 4, 6, ...) the following is done:

• Each column is sorted independently with the smallest number placed at the top.

Sorting of rows and columns requires \sqrt{n} time to complete using for example the odd-even transposition sort. The total time is then \sqrt{n} (log n + 1). There are other mesh sorting algorithms whose asymptotic run times match the lower bound.