<u>CSE6512 Lecture 25 Notes</u> <u>Sudipta Pathak</u> <u>December 06, 2011</u>

Problem 2:

IN A LINEAR ARRAY, EACH NODE IS THE DESTINATION OF ATMOST ONE PACKET. ROUTE THE PACKETS.

<u>Lemma :</u>

We can route these in \leq (p-1) steps.

Proof :

Use the **FARTHEST DESTINATION FIRST** Queue Discipline. Consider a packet π whose origin is *i* and whose destination is *j*.

Let m_q be the number of packets that can delay π and that are in node q (1≤q≤p).

Let r be such that $\ m_r,\ m_{r+1},\ ...,\ m_p \leq 1 \ and \ m_{r-1} > 1$

Call the sequence m_r , m_{r+1} , ..., m_j as the free sequence.

Note: In every time step, at least one new packet will join the free sequence. Also, if a packet is in the free sequence it will neither delay, nor be delayed by any other packet. See the following example.

Note that

$$p \atop q=1$$
 $m_q \leq (p-j).$

- \Rightarrow After (p-j) steps all of the packets that can delay π (including π) will be in the free sequence.
- $\Rightarrow \pi$ needs an additional \leq (j-i) steps.
- ightarrow Total time needed for π is ≤ (p-i). □

Problem 3

In a **LINEAR ARRAY** the number of packets originating from the first *i* nodes is i + o(i) for $1 \le i \le p$. Route the packets.

Lemma : We can route the packets in $\leq p + o(p)$ steps.

Proof : Use the **FARTHEST ORIGIN FIRST Q.D.**

CONSIDER A PACKET π whose origin is *i* and whose destination is *j*.

The packets π can only be delayed by *i* + o(*i*) packets.

If π is delayed more than once by some packet Q, it means that Q has been delayed by another packet R with a higher priority. R will not get to delay π .

- ⇒ The total delay π suffers is ≤ *i* + o(*i*) It has to travel a distance of (*j*-*i*)
- rightarrow The time taken by π is *j* + o(*i*) ≤ p + o(p). □

Routing in a n × n Array:

Consider any partial permutation. We can use a greedy algorithm to route the packets in time that is no more than the diameter of the mesh. This will be optimal in the worst case.

 π uses the shortest path along the row of origin first (Phase 1) and then

along the correct column (Phase 2).

There is no need for a Q.D. in Phase 1.

Use the **FARTHEST DESTINATION FIRST** Q.D. in Phase 2.

Phase 1 takes \leq (n-1) steps.

Phase 2 takes \leq (n-1) steps,

since Phase 2 is nothing but Problem 2.

 \Rightarrow Total time is $\leq 2(n-1)$. This indeed great!

What is the queue size needed? Consider an input where all the packets destined for column n/2 have their origins in row 1:

ORIGINS

In this case, it is easy to see that the QUEUE SIZE needed is (n/2). This is because, at each time step two packets arrive at node (1, n/2) and only one of these can be sent along column n/2 and the other packet has to be queued. This happens for the first n/2 steps.

We can use randomization to reduce queue sizes. This will be discussed in the next lecture.