CSE6512 Lecture 25 Notes

Sudipta Pathak

December 06, 2011

Problem 2:

IN A LINEAR ARRAY, EACH NODE IS THE DESTINATION OF ATMOST ONE PACKET. ROUTE THE PACKETS.

Lemma:

We can route these in $\leq(p-1)$ steps.

Proof:

Use the FARTHEST DESTINATION FIRST Queue Discipline. Consider a packet π whose origin is i and whose destination is j.

Let m_{q} be the number of packets that can delay π and that are in node $q(1 \leq q \leq p)$.
Let r be such that $m_{r}, m_{r+1}, \ldots, m_{p} \leq 1$ and $m_{r-1}>1$
Call the sequence $m_{r}, m_{r+1}, \ldots, m_{j}$ as the free sequence.

Note: In every time step, at least one new packet will join the free sequence. Also, if a packet is in the free sequence it will neither delay, nor be delayed by any other packet. See the following example.

Note that $\quad \begin{aligned} & p=1 \\ & \quad m_{q} \leq(\mathrm{p}-\mathrm{j}) .\end{aligned}$
\Rightarrow After ($\mathrm{p}-\mathrm{j}$) steps all of the packets that can delay π (including π) will be in the free sequence.
$\Rightarrow \pi$ needs an additional $\leq(j-i)$ steps.
\Rightarrow Total time needed for π is $\leq(p-i)$.

Problem 3

In a LINEAR ARRAY the number of packets originating from the first i nodes is $i+o(i)$ for $1 \leq i \leq p$. Route the packets.

Lemma: We can route the packets in $\leq p+o(p)$ steps.

Proof: Use the FARTHEST ORIGIN FIRST Q.D.

CONSIDER A PACKET π whose origin is i and whose destination is j.

The packets π can only be delayed by $i+o(i)$ packets.
If π is delayed more than once by some packet Q, it means that Q has been delayed by another packet R with a higher priority. R will not get to delay π.
\Rightarrow The total delay π suffers is $\leq i+o(i)$
It has to travel a distance of $(j-i)$
\Rightarrow The time taken by π is $j+o(i) \leq p+o(p)$.

Routing in an $\mathbf{n} \mathbf{n}$ Array:

Consider any partial permutation. We can use a greedy algorithm to route the packets in time that is no more than the diameter of the mesh. This will be optimal in the worst case.

π uses the shortest path along the row of origin first (Phase 1) and then along the correct column (Phase 2).

There is no need for a Q.D. in Phase 1.

Use the FARTHEST DESTINATION FIRST Q.D. in Phase 2.
Phase 1 takes $\leq(n-1)$ steps.
Phase 2 takes $\leq(n-1)$ steps,
since Phase 2 is nothing but Problem 2.
\Rightarrow Total time is $\leq 2(n-1)$. This indeed great!
What is the queue size needed? Consider an input where all the packets destined for column $\mathrm{n} / 2$ have their origins in row 1 :

ORIGINS

In this case, it is easy to see that the QUEUE SIZE needed is ($n / 2$). This is because, at each time step two packets arrive at node ($1, \mathrm{n} / 2$) and only one of these can be sent along column $n / 2$ and the other packet has to be queued. This happens for the first $n / 2$ steps.

We can use randomization to reduce queue sizes. This will be discussed in the next lecture.

