
CSE 6512 Randomization in Computing

Lecture Notes 23

Prepared by Yuan Song∗

1 Review - Assignment Problem

1.1 Problem Description

Input is a sequence of keys X = k1, k2, · · · , kn. Each key ki belongs to a group gi,
1 ≤ i ≤ n, 1 ≤ gi ≤ Q. Let ni be the number of keys that belong to group i, 1 ≤ i ≤ Q.
Upper bounds on group sizes are given: N1, N2, . . . , and NQ. In particular, Ni ≥ ni,

for 1 ≤ i ≤ Q and
∑Q

i=1Ni = O(n). The problem is to permute X such that all the
keys in group 1 appear first, followed by all the keys in group 2, . . ., followed by all the
keys in group Q.

Theorem 1. We can solve the assignment problem in Õ(
log n

log log n
) time using

n

log n
(log log n)2

arbitrary CRCW PRAM processors.

1.2 Algorithm Summary

Let the number of processors be P =
n

log n
(log log n)2.

1. Do a prefix computation on 2N1, 2N2, . . ., 2NQ to identify the boundaries of the
buckets.

=⇒ This takes O(
log n

log log n
) time.

2. For every key do:
Make log log n attempts to place it in the right bucket.

=⇒ This takes O(
log n

log log n
) time using

n

log n
(log log n)2 processors.

3. Do a prefix computation to compute the number Z of not yet placed keys.

=⇒ This takes O(
log n

log log n
) time.

4. Each unplaced key gets

⌊
P

Z

⌋
processors. For each unplaced key do:

all of its processors attempt to place the key in the right bucket. Do this until
success.

=⇒ We can show that this takes Õ(
log n

log logn
) time.

5. Do a prefix computation to compress the array.

=⇒ This takes O(
log n

log log n
) time.

∗Email:yuan.song@engr.uconn.edu

1

1.2.1 Algorithm Analysis

In step 2, the probability of failure in any attempt is ≤ 1

2

=⇒ The probability of failure in log log n attempts is ≤
(

1

2

)log logn

=
1

log n

=⇒ The expected number of unplaced keys Z at the end of step 2 is ≤ n

log n

Using Chernoff bounds, this number Z is Õ(
n

log n
)

=⇒ The number of processors per key in step 4 is Ω̃((log log n)2)

=⇒ The probability of failure in one attempt of step 4 is ≤
(

1

2

)(log log n)2

=⇒ The probability of failure P4 in
log n

log log n
attempts in step 4 satisfies:

P4 ≤
(

1

2

)(log log n)2
log n

log log n

=

(
1

2

)log n log log n

=⇒ For any constant α, we have P4 < n−α. 2

2 General Sorting

Theorem 2. We can sort n general keys in Õ(
log n

log logn
) time using n(log n)ε arbitrary

CRCW PRAM processors, for any constant ε > 0.

2.1 An Algorithm

1. Pick a sample of size
√
n;

2. Sort the sample and use the sample keys to divide the input sequence into
√
n+ 1

parts;

3. Assign (log n)ε processors per input key and perform a (log n)ε-ary search1 in the
sorted sample to figure out the part numbers of the input keys. Notice that the
sample keys are boundaries of the

√
n+ 1 parts;

4. Compute estimates on the part sizes using the sampling method that we have seen
for the parallel integer sorting algorithm;

5. Use the assignment algorithm to rearrange the input based on the part numbesr
of the input keys. (Notice that we have estimates of part sizes computed in step
4);

6. Recursively sort each part. If the parts are X1, X2, . . . , X√n+1, assign |Xi| proces-
sors to part i (for 1 ≤ i ≤ (

√
n+ 1).

1In k-ary search, we equally divide the current search space into k parts, find which part the key is

in and recursively search that part. If we use k processors, then searching for any key takes
logn

log k
time.

2

Figure 1: List ranking problem: An example input

Theorem 3. We can sort n integers in the range [1, n(log n)c] in Õ(
log n

log logn
) time

using
n

log n
log logn arbitrary CRCW PRAM processors.

3 List Ranking

3.1 Problem Description

Input: A linked list represented as an array. The value of any element in the array is
the index of its right neighbor in the list, i.e., A[i] = j =⇒ j is i’s right neighbor in the
list. An example of the input is shown in the figure 1.
Output: The rank of every node in the list. The rank of any node is the number of
nodes to its right in the list.

Remark 3.1. A sequential algorithm starts from the head of the list and traverses the
nodes from left to right and this takes O(n) time.

3.2 Algorithms

3.2.1 A Simple Parallel Algorithm

Theorem 4. We can solve list ranking in O(log n) time using n CREW PRAM proces-
sors.

Proof. The theorem can be proved using the following algorithm. The algorithm runs in
iterations. We assign one processor per node in the list. Initially each node is assigned
a rank of 1 except for the rightmost node that is assigned a rank of 0. Each node has a
neighbor pointer that points to its right neighbor in the list. In each iteration, we first
compute the sum of the rank of the current node and that of its current neighbor. The
result is saved at the current node. Second, we use “pointer jumping”, i.e., the neighbor
pointer is replaced with the pointer that points to the neighbor of the neighbor.

The above process is repeated until the neighbor pointers of all the nodes point to
the end of the list. An example of the algorithm with 7 nodes is shown in the figure 2.
This algorithm takes O(log n) time.

3

Figure 2: Pointer jumping algorithm: An example

3.2.2 An Optimal Randomized Parallel Algorithm

We have a randomized optimal algorithm using
n

log n
processors. The basic idea of the

algorithm is as follows:

1. Assign log n nodes per processor.

2. Splice nodes out in stages.

3. Solve list ranking problem on the resultant shorter list.

4. Splice nodes back in in reverse order.

The details and the analysis of the algorithm will be discussed in next lecture.

4

