CSE 6512 Lecture 22; November 10, 2011 Notes by Tamas Lengyel

1 Integer sort

1.1 Coarse Sort

In Coarse Sort we have to sort n integers in the range $\left[1, \frac{n}{(\log n)^{3}}\right]$. Let $D=$ $\frac{n}{(\log n)^{3}}$. Let the input be $X=k_{1}, k_{2}, \ldots, k_{n}$. Let $I(k)=\left\{i: k_{i}=k\right\}, 1 \leq k \leq$ D. The Coarse Sort algorithm works as follows.

1. Compute $N_{1}, N_{2}, \ldots, N_{D}$ such that $N_{i} \geq|I(i)|$ for $1 \leq i \leq D$ and $\sum_{i=1}^{D} N_{i}=O(n)$.
a) For $1 \leq i \leq D \log n$ in parallel do: processor i picks randomly a key from X.
b) Sort the sample picked in a) using Preparata's algorithm. This can be done in $O(\log n)$ time using $\frac{n}{\log n}$ processors). Let $I_{s}(k)=\left\{i: k_{i}\right.$ is in the sample and $\left.k_{i}=k\right\}$.
c) For $1 \leq i \leq D$ in parallel do: Processor i computes $N_{i}=d \alpha \log ^{2} n \times$ $\max \left\{\left|I_{s}(k)\right|, \log n\right\}$ where d is a constant. This is done in $\mathrm{O}(1)$ time.
2. Using the N_{i} 's and the assignment algorithm, rearrange the keys. The group \# of any key is its value.

1.2 Analysis

1. Case 1. If $|I(k)|<d \alpha \log ^{3} n$ then $N_{k} \geq I(k)$
2. Case 2. $|I(k)| \geq d \alpha \log ^{3} n$:

Note that $I_{S}(k)$ is binomial with parameters $\left(\frac{n}{\log ^{2} n}, \frac{|I(k)|}{n}\right)$. Using Chernoff bounds:
$\operatorname{Prob}\left[\left|I_{S}(k)\right|<(1-\epsilon) \frac{|I(k)|}{\log ^{2} n}\right] \leq \exp \left(\frac{-\epsilon^{2}|I(k)|}{2 \log ^{2} n}\right)$
Let $\epsilon=\frac{1}{2} \Rightarrow$ RHS $\leq \exp \left(\frac{-|I(k)|}{8 \log ^{2} n}\right)$
If $d \geq 8$, RHS $\leq n^{-\alpha}$

$$
\Rightarrow N_{k} \geq I(k) \text { with probability } \geq\left(1-n^{-\alpha}\right) .
$$

3. $\sum_{k=1}^{D} N_{k}=\sum_{k=1}^{D} d \alpha \log ^{2} n \times \max \left\{\left|I_{s}(k)\right|, \log n\right\}$
$\leq \sum_{k=1}^{D} d \alpha \log ^{2} n\left\{\left|I_{s}(k)\right|+\log n\right\}$
$\leq d \alpha \log ^{2} n \sum_{k=1}^{D}\left|I_{s}(k)\right|+\sum_{k=1}^{D} d \alpha \log ^{3} n$
$=2 d \alpha n=O(n)$
Note that $\sum_{k=1}^{D} d \alpha \log ^{3} n=d \alpha n$,
$\sum_{k=1}^{D}\left|I_{s}(k)\right|=\frac{n}{\log ^{2} n}$,
and $d \alpha \log ^{2} n \sum_{k=1}^{D}\left|I_{s}(k)\right|=d \alpha n$.

2 Sub-logarithmic time algorithms

2.1 Solving the assignment problem in $O\left(\frac{\log n}{\log \log n}\right)$ time

Input: $X=k_{1}, k_{2}, \ldots, k_{n}$
Group \#'s: $g_{1}, g_{2}, \ldots, g_{n}$. Assume that the group number is an integer in the range $[1, q]$.

Upper bounds on the group sizes: $N_{1}, N_{2}, \ldots, N_{q}$
Output: A rearrangment of X based the groups \#'s.

Theorem: We can solve the above problem in $O\left(\frac{\log n}{\log \log n}\right)$ time using $\frac{n}{\log n}(\log \log n)^{2}$ arbitrary CRCW PRAM processors.

Proof: Here is an algorithm: Let $P=\frac{n}{\log n}(\log \log n)^{2}$.

1. Using a prefix sums computation on $2 N_{1}, 2 N_{2}, \ldots, 2 N_{q}$, identify the boundaries of the buckets. This takes $O\left(\frac{\log n}{\log \log n}\right)$ time.
2. For $1 \leq i \leq n$ in parallel do:

Make $\log \log n$ attempts to place the key k_{i} in its right bucket.
This can be done using $\frac{n}{\log n}(\log \log n)^{2}$ processors in $O\left(\frac{\log n}{\log \log n}\right)$ time.
3. Do a prefix computation to identify the number Z of elements that have not been placed yet.
\Rightarrow This takes $O\left(\frac{\log n}{\log \log n}\right)$ time.
4. Assign $\left(\frac{P}{Z}\right)$ processors to each such element. The processors associated with any such element attempt in parallel to place the element in its bucket. A total of $O\left(\frac{\log n}{\log \log n}\right)$ time is allocated.
5. Even if there is a single unsuccesful element, start all over again (from step 2).

Analysis: in the next lecture.

