
CSE 6512 Lecture 22; November 10, 2011
Notes by Tamas Lengyel

1 Integer sort

1.1 Coarse Sort

In Coarse Sort we have to sort n integers in the range
[
1, n

(logn)3

]
. Let D =

n
(logn)3

. Let the input be X = k1, k2, ..., kn. Let I(k) = {i : ki = k}, 1 ≤ k ≤
D. The Coarse Sort algorithm works as follows.

1. Compute N1, N2, ..., ND such that Ni ≥ |I(i)| for 1 ≤ i ≤ D and
D∑
i=1

Ni = O(n).

a) For 1 ≤ i ≤ D log n in parallel do: processor i picks randomly a key
from X.

b) Sort the sample picked in a) using Preparata’s algorithm. This can
be done in O(log n) time using n

logn
processors). Let Is(k) = {i : ki is

in the sample and ki = k}.
c) For 1 ≤ i ≤ D in parallel do: Processor i computes Ni = dα log2 n×
max{|Is(k)|, log n} where d is a constant. This is done in O(1) time.

2. Using the Ni’s and the assignment algorithm, rearrange the keys. The
group # of any key is its value.

1.2 Analysis

1. Case 1. If |I(k)| < dα log3 n then Nk ≥ I(k)

2. Case 2. |I(k)| ≥ dα log3 n:

Note that IS(k) is binomial with parameters (n
log2 n

, |I(k)|
n

). Using Cher-
noff bounds:

Prob[|IS(k)| < (1− ε) |I(k)|
log2 n

] ≤ exp(−ε
2|I(k)|

2 log2 n
)

Let ε = 1
2
⇒ RHS ≤ exp(−|I(k)|

8 log2 n
)

If d ≥ 8, RHS ≤ n−α

1

⇒ Nk ≥ I(k) with probability ≥ (1− n−α).

3.
D∑
k=1

Nk =
D∑
k=1

dα log2 n×max{|Is(k)|, log n}

≤
D∑
k=1

dα log2 n{|Is(k)|+ log n}

≤ dα log2 n
D∑
k=1

|Is(k)|+
D∑
k=1

dα log3 n

= 2dαn = O(n)

Note that
D∑
k=1

dα log3 n = dαn,

D∑
k=1

|Is(k)| = n

log2 n
,

and dα log2 n
D∑
k=1

|Is(k)| = dαn.

2 Sub-logarithmic time algorithms

2.1 Solving the assignment problem in O(log n
log log n) time

Input: X = k1, k2, ..., kn
Group #’s: g1, g2, ..., gn. Assume that the group number is an integer in

the range [1, q].
Upper bounds on the group sizes: N1, N2, ..., Nq

Output: A rearrangment of X based the groups #’s.

2

Theorem: We can solve the above problem inO
(

logn
log logn

)
time using n

logn
(log log n)2

arbitrary CRCW PRAM processors.

Proof: Here is an algorithm: Let P = n
logn

(log log n)2.

1. Using a prefix sums computation on 2N1, 2N2, ..., 2Nq, identify the
boundaries of the buckets. This takes O(logn

log logn
) time.

2. For 1 ≤ i ≤ n in parallel do:

Make log log n attempts to place the key ki in its right bucket.
This can be done using n

logn
(log log n)2 processors inO(logn

log logn
)

time.

3. Do a prefix computation to identify the number Z of elements that
have not been placed yet.

⇒ This takes O(logn
log logn

) time.

4. Assign (P
Z

) processors to each such element. The processors associated
with any such element attempt in parallel to place the element in its
bucket. A total of O(logn

log logn
) time is allocated.

5. Even if there is a single unsuccesful element, start all over again (from
step 2).

Analysis: in the next lecture.

3

