CSE 6512 Lecture 22; November 10, 2011 Notes by Tamas Lengyel

1 Integer sort

1.1 Coarse Sort

In Coarse Sort we have to sort n integers in the range $\left[1, \frac{n}{(\log n)^3}\right]$. Let $D = \frac{n}{(\log n)^3}$. Let the input be $X = k_1, k_2, ..., k_n$. Let $I(k) = \{i : k_i = k\}, 1 \le k \le D$. The Coarse Sort algorithm works as follows.

1. Compute $N_1, N_2, ..., N_D$ such that $N_i \ge |I(i)|$ for $1 \le i \le D$ and $\sum_{i=1}^D N_i = O(n).$

a) For $1 \le i \le D \log n$ in parallel do: processor *i* picks randomly a key from *X*.

b) Sort the sample picked in a) using Preparata's algorithm. This can be done in $O(\log n)$ time using $\frac{n}{\log n}$ processors). Let $I_s(k) = \{i : k_i \text{ is} in \text{ the sample and } k_i = k\}.$

c) For $1 \le i \le D$ in parallel do: Processor *i* computes $N_i = d\alpha \log^2 n \times \max\{|I_s(k)|, \log n\}$ where *d* is a constant. This is done in O(1) time.

2. Using the N_i 's and the assignment algorithm, rearrange the keys. The group # of any key is its value.

1.2 Analysis

- 1. Case 1. If $|I(k)| < d\alpha \log^3 n$ then $N_k \ge I(k)$
- 2. Case 2. $|I(k)| \ge d\alpha \log^3 n$:

Note that $I_S(k)$ is binomial with parameters $(\frac{n}{\log^2 n}, \frac{|I(k)|}{n})$. Using Chernoff bounds:

Prob[
$$|I_S(k)| < (1 - \epsilon) \frac{|I(k)|}{\log^2 n}] \le \exp(\frac{-\epsilon^2 |I(k)|}{2 \log^2 n})$$

Let $\epsilon = \frac{1}{2} \Rightarrow \text{RHS} \le \exp(\frac{-|I(k)|}{8 \log^2 n})$
If $d \ge 8$, RHS $\le n^{-\alpha}$

 $\Rightarrow N_k \ge I(k)$ with probability $\ge (1 - n^{-\alpha}).$

3.
$$\sum_{k=1}^{D} N_k = \sum_{k=1}^{D} d\alpha \log^2 n \times \max\{|I_s(k)|, \log n\}$$
$$\leq \sum_{k=1}^{D} d\alpha \log^2 n \{|I_s(k)| + \log n\}$$
$$\leq d\alpha \log^2 n \sum_{k=1}^{D} |I_s(k)| + \sum_{k=1}^{D} d\alpha \log^3 n$$
$$= 2d\alpha n = O(n)$$
Note that
$$\sum_{k=1}^{D} d\alpha \log^3 n = d\alpha n,$$
$$\sum_{k=1}^{D} |I_s(k)| = \frac{n}{\log^2 n},$$
and $d\alpha \log^2 n \sum_{k=1}^{D} |I_s(k)| = d\alpha n.$

2 Sub-logarithmic time algorithms

2.1 Solving the assignment problem in $O(\frac{\log n}{\log \log n})$ time

Input: $X = k_1, k_2, ..., k_n$

Group #'s: $g_1, g_2, ..., g_n$. Assume that the group number is an integer in the range [1, q].

Upper bounds on the group sizes: $N_1, N_2, ..., N_q$

Output: A rearrangement of X based the groups #'s.

Theorem: We can solve the above problem in $O\left(\frac{\log n}{\log \log n}\right)$ time using $\frac{n}{\log n}(\log \log n)^2$ arbitrary CRCW PRAM processors.

Proof: Here is an algorithm: Let $P = \frac{n}{\log n} (\log \log n)^2$.

- 1. Using a prefix sums computation on $2N_1, 2N_2, ..., 2N_q$, identify the boundaries of the buckets. This takes $O(\frac{\log n}{\log \log n})$ time.
- 2. For $1 \le i \le n$ in parallel do:

Make log log n attempts to place the key k_i in its right bucket. This can be done using $\frac{n}{\log n} (\log \log n)^2$ processors in $O(\frac{\log n}{\log \log n})$ time.

3. Do a prefix computation to identify the number Z of elements that have not been placed yet.

 \Rightarrow This takes $O(\frac{\log n}{\log \log n})$ time.

- 4. Assign $\left(\frac{P}{Z}\right)$ processors to each such element. The processors associated with any such element attempt in parallel to place the element in its bucket. A total of $O\left(\frac{\log n}{\log \log n}\right)$ time is allocated.
- 5. Even if there is a single unsuccesful element, start all over again (from step 2).

Analysis: in the next lecture.