CSE 6512 Lecture 22; November 10, 2011
Notes by Tamas Lengyel

1 Integer sort

1.1 Coarse Sort

W} Let D =
(logn)3 Let the input be X = ky, ko, ..., ky. Let I(k) ={i: k; =k}, 1 <k <
D. The Coarse Sort algorithm works as follows.

In Coarse Sort we have to sort n integers in the range {1 (

1. Compute Ny, No, ..., Np such that N; > |I(i)] for 1 < ¢ < D and
D
i=1
a) For 1 <i < Dlogn in parallel do: processor i picks randomly a key

from X.

b) Sort the sample picked in a) using Preparata’s algorithm. This can
be done in O(logn) time using =% processors). Let I,(k) = {i : k; is
in the sample and k; = k}.

¢) For 1 < i < D in parallel do: Processor i computes N; = da log® n x
max{|[;(k)|,logn} where d is a constant. This is done in O(1) time.

2. Using the N;’s and the assignment algorithm, rearrange the keys. The
group # of any key is its value.

1.2 Analysis
1. Case 1. If [I(k)| < dalog®n then Ny > I(k)

2. Case 2. |I(k)| > dalog® n:

Note that Ig(k) is binomial with parameters (log’én,”g)' ). Using Cher-
noft bounds:

Prob[ [Is(k)| < (1 — ¢) 28] < exp (510l

log? — 2log% n

Let e = 1 = RHS < exp(81|og(§)7l)
Ifd>8 RHS <n™®




|s|=nflog~2(n)

D
< Y dalog? n{|I,(k)| + logn}
k=1

D D
<dalog’nd  |L(k)| + > dalog’n

k=1 k=1
= 2dan = O(n)
D
Note that Z dalog®n = dan,
k=1
D
n
Z ‘Is(kj)| = 1 2 ?
k=1 0g n

D
and dalog®n > |I(k)| = dan.
k=1

2 Sub-logarithmic time algorithms

logn
loglogn

2.1 Solving the assignment problem in O( ) time

Input: X = ky, ko, ..., ky

Group #’s: g1, 92, ---, gn- Assume that the group number is an integer in
the range [1, ¢|.

Upper bounds on the group sizes: Ny, Ns, ..., N,

Output: A rearrangment of X based the groups #’s.



logn
loglogn

Theorem: We can solve the above problem in O ( ) time using (loglog n)?

arbitrary CRCW PRAM processors.

_n_
logn

Proof: Here is an algorithm: Let P = %(log logn)?2.
1. Using a prefix sums computation on 2Ny,2N,,...,2N,, identify the

boundaries of the buckets. This takes O(log’i o) time.

2. For 1 <4 < n in parallel do:

Make log log n attempts to place the key k; in its right bucket.

This can be done using - (log log n)? processors in O(log)ﬁ) )
time.

3. Do a prefix computation to identify the number Z of elements that
have not been placed yet.

= This takes O(log’lgogn) time.

4. Assign (g) processors to each such element. The processors associated
with any such element attempt in parallel to place the element in its

bucket. A total of O(log’ﬁ)gn) time is allocated.

5. Even if there is a single unsuccesful element, start all over again (from
step 2).

Analysis: in the next lecture.



