
CSE 6512 Lecture on Optimal Randomized Sorting

James Lindsay

November 3, 2011

Preparata’s Algorithm

Theorem

We can sort any n elements in O(log n) time using n log n CREW PRAM
processors.

The input is a sequence of k elements denoted by

X =
[
k1, k2, ..., kn/ logn

]
,
[
kn/ logn+1, ..., k2n/ logn

]
, ..., [..., kn]

Let S1 be the subsequence of the first n
logn elements of X; let S2 be the

subsequence of the next n
logn elements of X; and so on.

Preparata’s Algorithm

The algorithm is detailed as follows

for 1 ≤ i ≤ log n in ||l do
(1) Recursively sort Si using n processors
(2)
for 1 ≤ i, j ≤ log n in ||l do

merge Si with Sj

end for
(3)
for 1 ≤ i ≤ n in ||l do

using log n processors compute the global rank of ki using a prefix
computation

end for
(4)
for 1 ≤ i ≤ n in ||l do
if rank(ki) = ri then

output ki in cell ri
end if

end for
end for

1

Analysis

Let T (n) be the run time of Preparata’s algorithm to sort n elements using
n log n processors. Then, the various steps take the following times:

1. T (n/ log n)

2. O(log log n). Here we have used the fact that we can merge two sorted
sequences of length n each in O(log log n) time using n processors.

3. O(log log n)

4. O(1)

Thus we have:

T (n) = T (
n

log n
) + O(log log n) = O(log n)

Theorem

(Rajasekaran and Reif 1989)
We can sort n integers in the range [1, n(log n)c] in Õ(log n) time using

n
logn arbitrary CRCW PRAM processors, for any constant c.

Algorithm

The algorithm utilizes bucket sorting techniques using two phases. The
first phase sorts a majority of the bits using a non-stable technique while the
second phase sorts the remaining bits using a stable technique. Since the
first phase of the sorting does not have any previous ordering to maintain it
is possible to gain an advantage by using non stable sorting.

We can think of each input key as a binary string of length log n +
c log logn.

2

3

In the first phase the keys are sorted with respect to their log n +
c log logn least significant bits and in the second phase they are sorted with
respect to the remaining (c + 3) log log n bits. More details will be covered
in a subsequent lecture.

Optimal Randomized Sorting

Theorem

We can sort n arbitrary elements in Õ(log n) time using n arbitrary CRCW
PRAM processors.

Algorithm

(1) Let s = n/ log n. Pick a random sample S of size s.
(2) Sort the sample using Preparata’s algorithm. Let the sorted sample
be L = l1, l2, ..., ls.
(3)
for 1 ≤ i ≤ n in ||l do

Using 1 processor do a binary search on L to figure out the partition
that ki belongs to. See figure 1.

end for
(4) Sort the keys with respect to their part numbers using Rajasekaran
and Reif’s Lemma.
(5)
for all 1 ≤ i ≤ (s + 1) in ||l do

Sort Xi using Preparata’s algorithm using |Xi| processors
end for

Note that the size of Xi = Õ(log2 n). This follows from a random sampling
lemma we have proved a while ago. Each Xi can be sorted in O(log |Xi|) time
using |Xi| log |Xi| processors. This implies (using the slow down lemma) that
Xi can also be sorted in O(log2 |Xi|) time using Xi processors.

Analysis

1. Step 1 can be done in O(1) time.

2. Step 2 takes O(log n) time using n processors.

3. Step 3 takes O(log n) time.

4. This step takes Õ(log n) time.

4

5. This step takes O(maxs+1
i=1 log2 |Xi|) time using

∑s+1
i=1 |Xi| = n proces-

sors. Since maxs+1
i=1 |Xi| = Õ(log2 n), this step takes Õ

(
(log log n)2

)
=

Õ(log n) time.

Thus the entire algorithm takes Õ(log n) time using n processors. �

Figure 1: sorting strategy

5

