Randomization in computing
(CSE 6512)

Notes of lecture 2 on Sep 01 2011
By

Seema Munavalli

Randomization in Computing; Fall 2011

Quick sort (1967 ,by Hoare)

LetII;, I, II5........ I, be the sorted order of the input.

Let X .. {1, if IT; andII; will be compared
" 7o, otherwise

Total # of comparison made= Z:;H 1 v X

Let P ;; be the probability that IT; and II; will be compared

= Expected # of comparisons

E[Zj>i ?=1 X i,j]

Z]->i i-1E (X i)

*Since X i; is a binary variable, it can take only values 0 or 1
=EXij)=1.P;; +(1-P;).0

=Py

= Expected # of comparisons

*Every input key acts as partition element at some point of time.

Consider H1’ Hz’ H3. . Hi-l, Hi, Hi+1 Hj_1, Hj, Hj+] e ..Hn

*Observation : If IT; or I; is picked as a pivot before any of the keys ITi

IT; and II;will be compared, otherwise they will not be compared.

PO

Lecture 2 - Notes

Hj+] ,then

Page 2 of 7

Randomization in Computing; Fall 2011
Lecture 2 - Notes

= P i,j :2/0-1+1) -- (2)

= Expected # of comparisons

= Z;:m YL2/G-i+ 1)

N
i=1

<=2z [
i=1

1
n—-i+1

N |

+ie
3

|

1

o]

N | =

+ie
3

*Note that [1/2 +1/3+1/4+........ 1/n] 1s a simple harmonic series ,that is

[1/2 +1/3+1/4+........ 1/n] =& (log n)

<= ZZ; O (08N e (3)

*Note that we can get very good upper and lower bounds on summations using integrals.
Consider the below figure:

17

N

%

N

RLLLLHIILTIHLIBUD

N

N\

NN

LD

D

N

R

LLLIMDMUMD]IOISNY)

(a-1) (a) (b) (b+1)

Page 3 of 7

Randomization in Computing; Fall 2011
Lecture 2 - Notes

We can write

ffﬂf(x)dx < Zfzaf(i) < ff_lf(x)dx 4)

Therefore using eqn 3 and eqn 4 we can write the runtime of this algorithm =0 (n log n)

In the quicksort algorithm proposed by Hoare, the partitioning element is picked
deterministically. The above average case analysis is done assuming that the rank of the pivot
element could be any integer in the range [1,n] all with equal probability.

We can convert the above deterministic algorithm into a randomized algorithm by picking the
pivot key with a coin flip. In this case the same analysis can be used to show that the average run
time of this Las Vegas algorithm is O(n log n). Note that in the average case analysis of the
deterministic algorithm the probability space under consideration is the space of all possible
inputs whereas in the analysis of the randomized algorithm the probability space is the space of
all possible outcomes for the coin flips.

A better randomized algorithm was proposed by Frazer and McKellar

Let’s prove a sampling lemma

* Let X be the a sequence of n elements X=kj ks.....ky.
Pick a random sample S of size s.
Sort S to get 1;,15.....]sand partition X into X;,X5.....Xs+1 as shown in the figure below:

X
\ 4 \ 4 \ 4 \ 4
<:11 >11 and <:12 >ls_1 and <:ls >ls
X] Xz Xs XSH
LEMMA: The size of each X; is O(n/s log n)
Proof: LetIl; Il Ils........ Ig,..... g I1, be the sequence X in sorted order.

Page 4 of 7

Randomization in Computing; Fall 2011
Lecture 2 - Notes

|
q elements

q elements g elements

G G, Gn/q

Partition the sequence into groups of size g each. Probability that a specific element of G, is in the
sample Sis s/n

= probability that this specific element is not in S=(1-s/n)
Probability that G| has no representative in S is <=(1-s/n).
=Probability that 3 a group with no representative in S is <=n/q(1-s/n)".
<=n(1-s/n)".

We want this probability to be <=n™

Fact: |(1-x)""<=l/e | for any 1>x>0

n/s.s/n.q

Using the above fact, the above probability is <=n(1-s/n)

<=n.e™"d
Equate this with n®

ne’m =

= e—s/n.q= n—(aﬂ)
= -(s/n).q = -(o+1)log. n.
= gq=n/s(o+1)log. n

= The size of each X; is <= 2 n/s(a+1)log. n with probability >=1- n"™*

= The size of each Xi is O(n/s log n).

Sorting Algorithm :-Input is X=k;,k;... ky.

1) Pick a Random Sample S with |S| =s

Page 5 of 7

Randomization in Computing; Fall 2011
Lecture 2 - Notes

This step takes O(s) time [using uniform cost model, we can treat all the basic operations

(including the coin flip) as unit time operations]
2) Sort S to get Iy,1o,........ L.
This step takes O(s log s) time
3)Partition X to X;,X5....Xs11 S.T
Xi={qe X:q<=h}
Xi={q € X : li.i<g<=li}; Fori=2,.....s;

Xsr1={q € X : g>Is}.

This step takes n log s time and can be done using binary search. L.e., for each input key we

perform a binary search in the sorted sample to figure out which part this key belongs to.

4)For i=1...s+1 do

Sort X (using any asymptotically optimal sorting algorithm such as heapsort)
5)For i=1 to (s+1) do

Output X in sorted order;
Analysis :-
Pick s to be n/(log’n).
= Size of each Xi is O (log n).

Time for step 4 =

S+1

> o0l log X, 1)
i=1

1
=O[Max 1] log|X;| Zi{IXil].
= O(n.log log n).

=Runtime of this algorithm is

Page 6 of 7

Randomization in Computing; Fall 2011
Lecture 2 - Notes

0(n/log?n)+0(n/log n)+ nlog s+ O(n.log log n).
=n log s+ O(n.log log n).
=nlog n+ O(n.log log n).
* A lower bound on the run time of any comparison based sorting algorithm is Q(log |n!|)
Stirling’s approximation: n! = (n/e)". W .(1+1/11n). If we use this approximation, the

lower bound for sorting run time is = n log n — n log e. As a result, the run time of Frazer
and McKellar’s algorithm is very nearly equal to the lower bound!

Page 7 of 7

