CSE6512: Randomization in Computing Lecture 19, Nov 1st 2011

Notes by Anas Al-Okaily

Selection:

Input: $X = k_1, k_2, k_n$ and $i, 1 \le i \le n$

Output: the *i*th smallest element of *X*.

Fact: let y be any element. We can compute Rank(y, X) in $O(\log n)$ time. This can be done using a prefix addition using $\frac{n}{\log n}$ CREW PRAM processors.

=> selection can be done in $O(\log n)$ time using $\frac{n^2}{\log n}$ Processors.

Theorem: we can solve selection in $\tilde{O}(\log n)$ time using $\frac{n}{\log n}$ CREW PRAM processors.

An Algorithm:

To begin with, each key is alive; N is the number of alive keys at any time; N := n; $P = \frac{n}{\log n}$

$$N := n; P = \frac{n}{\log n}$$

While $N > \sqrt{n}$ do

- Pick a sample S of size s keys; the first s processors pick one sample key each 1) randomly. Here $s = N^{\frac{1}{3}}$. This step takes O(1) time.
- Sort the sample and pick two elements l_1 and l_2 , so that 2) Rank $(l_1,S) = i \frac{s}{N} - \delta$

Rank
$$(l_2,S) = i \frac{s}{N} + \delta$$
; Where $\delta = \sqrt{4\alpha \log n}$
This step takes $O(\log n)$ time.

- Count the number of N_1 of alive keys that are $< l_1$; as well count the number N_2 of 3) alive keys in the range $[l_1, l_2]$. This step will take $O(\log n)$ time, since we can use prefix computation.
- If $!(N_1 < i \le N_1 + N_2)$ then start over from step 1. 4)

This takes O(1) time.

- Delete all the keys that are not in the range $[l_1, l_2]$. $i = i - N_1$; $N = N_2$; This step takes $O(\log n)$ time.
- 6) Concentrate the alive keys using a prefix computation. This step will take $O(\log n)$ time.

End of while

Sort the alive keys using the trivial algorithm and output the *ith* smallest element. This step will take $O(\log n)$ time.

Analysis:

According to the sampling lemma, the number of alive keys after each run of the while loop is $\tilde{O}\left(\frac{N}{\sqrt{s}}\sqrt{\log N}\right) = \tilde{O}\left(\frac{N}{\sqrt{N^{\frac{1}{3}}}}\sqrt{\log N}\right) => \tilde{O}\left(N^{0.9}\right)$.

After a constant number of while loops, the number of keys will be $\tilde{O}(\sqrt{n})$.

Corollary: we can do the same in $\tilde{O}(\frac{\log n}{\log \log n})$ time using $\frac{n}{\log n}\log \log n$ arbitrary CRCW PRAM processors.

Sorting:

Authors	Model	Processors	Time	Rand/Det	Years
BATCHER	Butterfly	n	$\frac{1}{2}\log^2 n$	Deterministic	1961
PREPARATA	CRCW PRAM	$n \log n$	$O(\log n)$	Deterministic	1971
AKS	Sorting network	n	$O(\log n)$	Deterministic	1981
REISCHüK	CRCW PRAM	n	$\tilde{\mathrm{O}}(\log n)$	Randomized	1981
COLE	EREW PRAM	n	$O(\log n)$	Deterministic	1984
RAJASEKARAN & REIF	CRCW PRAM	$n(\log n)^{\epsilon} 0 < \epsilon < 1$	$\tilde{\mathcal{O}}(\frac{\log n}{\log\log n})$	Randomized	1987
COLE	CRCW PRAM	$n(\log n)^{\epsilon}$, $0 < \epsilon < 1$	$O(\frac{\log n}{\log\log\log n})$	Deterministic	1989

(ALON & AZAR 1985)

Theorem: Sorting of n elements using P processors needs $\Omega\left(\frac{\log n}{\log(1+\frac{P}{n})}\right)$ time on the parallel comparison tree model.

Theorem: we can sort n elements in \tilde{O} (logn) time using n CRCW PRAM processors.

Proof: here is an algorithm..... *To be continued in the next lecture*.