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Help for Homework Problem #9 

 

Let G(V,E) be any undirected graph 

 

We want to calculate the travel time across the graph.   

 

Think of each edge as one resistor of 1 Ohm.   

 

Say we have two nodes: i and j 

 

Let the effective resistance between i and j = Rij =  where rx is 

the resistance of a path between i and j.  Therefore Rij is one over 

the sum of one over the resistance of each path from i to j. 

 

 

 

Fact: The commute time between i and j is Cij 

 Cij = 2mRij where m = |E| 

 

Let the resistance of the graph be R = Max Rij 

 

Fact: The expected cover time C(G) = O(mRlogn) 

 

Fact: The Rij for any 2 nodes ≤ the length of the shortest path between i and j.  For example: 

 

Rij =   ≤ 2                                                                                                               

 

 

 

 

Fact: For a d-regular graph with n nodes, the diameter ≤  

 

Using all of these facts together, you can solve problem number 9. 

 

Example: Using the facts for a 2-SAT 

 

 Modeled as a random walk on a graph 

  
 m = n 

 R = n 

Thus C(G) = O(n
2
logn) Note: this is worse than with Markov chains, but this method will 

result in a better result with d-regular graphs, as in the HW 
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Prefix Calculations 

 

Input: k1, k2, … kn   

 

Output: k1, k1 k2, k1 k2 k3, …, k1 k2 k3 kn 

Here  is any binary, associative, and unit time operation. Recall that if  is 

associative then, for any 3 elements x,y,z it should be true that (x y)  z = x  

(y  z) = x y  z. 

 

Examples: 

1.  and  is addition 

2.  and  is multiplication 

3.  2x2 matrices and  is matrix multiplication 

4.  and  is Min 

 

The best sequential run time = S = n – 1 

 

Algorithms for logarithmic time prefix calculations 

 

Algorithm 1 

 

P = n CREW processors 

 

Split your input in 2.  Then recursively perform prefix computations on each half.  Overall the 

process works like: 

 

 

 

 

 

 

Note: k’2 = k1 + k2 

            k’3 = k1 + k2
 
+ k3 

         and so on for all to k’n 

 

 

 

Analysis of this algorithm: 

 

Let T(n) be the runtime on any input of size n using n processors. 
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Then T(n) = T + O(1) = O(logn) 

PT = O(nlogn) ≠ O(n) therefore the algorithm is not work optimal. 

 

A work optimal algorithm: 

 

P = CREW PRAM processors 

 

Assign log n elements to each processor such that the 1
st
 log n elements go to p1, 2

nd
 log n 

elements go to p2, etc. 

 

1. For 1 ≤ i ≤  in || do 

Processor i computes the prefix sums (note: here sum refers to the  operator) of its 

elements 

 

Let the results be k’1, k’2, … k’logn … k’n 

 

2. Perform the prefix calculation on k’logn, … k’2logn, … k’n 

 

Let the results be k”logn, …, k”2logn, … k”n 

 

3. For 1 ≤ i ≤ n in || do 

Processor i pre-adds k”(i-1)log n to every value it computed in step 1 

 

 

Analysis: 

 

Step 1 takes log n time 

Step 2 takes O  = O(logn) time 

Step 3 takes  log n time 

Thus total time = O(logn) 

Thus, this algorithm is asymptotically optimal. 

 

Example: 

 

Input: X= k1, k2, … kn   (a sequence of elements) and an integer y 

 

Output: a rearrangement of X where all the elements ≤ y appear first, followed by all other 

elements 

 

An example: 

y = 10 

 

Output: 

8 11 7 3 15 9 16 2 4 
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The algorithm: 

Use a Boolean array A[1:n] such that 

 A[i] = 1 if ki ≤ y  

         = 0 otherwise 

 for all 1 ≤ i ≤ n 

 

for the example: 

 

 

Now perform a prefix sums (where sum refers to addition) on the array 

 

 

Now you can use these prefix values as unique addresses for the elements that are ≤ y and place 

them in successive cells. We can use another similar prefix computation to place the remaining 

elements in successive cells. 

  

 

Can we do prefix calculations in O(1)? Nope! 

 

(Beam and Hastäd 1985) 

Theorem: Computing the parity of n bits needs Ω   time on the CRCW PRAM given only 

a polynomial number of processors. 

 

(Cole and Vishkin 1983) 

We can solve the prefix additions problem in  time using  arbitrary CRCW 

PRAM processors, provided the elements are integers in the range [1, n
c
] for any constant c. 

 

Example uses: 

 

Sorting: 

 

k1, k2, … kn  = X 

 

We can sort these in O(log n) time using  CREW PRAM Processors. 

 

This is done by giving each element n processors and letting them calculate its rank, and then 

outputting the elements in the order of their ranks. 

 

Selection: 

 

Input: k1, k2, … kn  = X and an i such that 1 ≤ i ≤ n 

 

Output: The i
th

 smallest element of X 

8 7 3 9 2 4 11 15 16 

1 0 1 1 0 1 0 1 1 

1 1 2 3 3 4 4 5 6 
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Slow-down Lemma 

 

Lemma: Let A be a || algorithm that uses p processors and runs in time T.  The same algorithm 

can be run on p’ processors in time  provided p’ ≤  p. 

 

Proof: 

 

 

Old Machine 

 

 

New Machine 

 

 

Assign  processors of the old machine to each of the processors in the new machine.  Each 

step of the old machine can be simulated in ≤  steps in the new machine. 

The runtime on this new machine is  . 


