Randomization in Computing Notes - 10/27/11
Written up by: Michael Fagan

Help for Homework Problem \#9

Let $\mathrm{G}(\mathrm{V}, \mathrm{E})$ be any undirected graph
We want to calculate the travel time across the graph.
Think of each edge as one resistor of 1 Ohm.
Say we have two nodes: i and j

Let the effective resistance between i and $\mathrm{j}=\mathrm{R}_{\mathrm{ij}}=\frac{1}{\sum \frac{1}{\mathrm{r}_{\mathrm{x}}}}$ where r_{x} is the resistance of a path between i and j . Therefore R_{ij} is one over the sum of one over the resistance of each path from i to j.

Fact: The commute time between i and j is C_{ij}

$$
\mathrm{C}_{\mathrm{ij}}=2 \mathrm{mR}_{\mathrm{ij}} \text { where } \mathrm{m}=|\mathrm{E}|
$$

Let the resistance of the graph be $\mathrm{R}=\operatorname{Max} \mathrm{R}_{\mathrm{ij}}$
Fact: The expected cover time $\mathrm{C}(\mathrm{G})=\mathrm{O}(\mathrm{mRlogn})$
Fact: The R_{ij} for any 2 nodes \leq the length of the shortest path between i and j . For example:

Fact: For a d-regular graph with n nodes, the diameter $\leq \frac{n}{d}$
Using all of these facts together, you can solve problem number 9 .
Example: Using the facts for a 2-SAT
Modeled as a random walk on a graph

$\mathrm{m}=\mathrm{n}$
$\mathrm{R}=\mathrm{n}$
Thus $\mathrm{C}(\mathrm{G})=\mathrm{O}\left(\mathrm{n}^{2} \log n\right)$ Note: this is worse than with Markov chains, but this method will result in a better result with d-regular graphs, as in the HW

Prefix Calculations

Input: $\mathrm{k}_{1}, \mathrm{k}_{2}, \ldots \mathrm{k}_{\mathrm{n}} \in \Sigma$
Output: $\mathrm{k}_{1}, \mathrm{k}_{1} \oplus \mathrm{k}_{2}, \mathrm{k}_{1} \oplus \mathrm{k}_{2} \oplus \mathrm{k}_{3}, \ldots, \mathrm{k}_{1} \oplus \mathrm{k}_{2} \oplus \mathrm{k}_{3} \ldots \oplus \mathrm{k}_{\mathrm{n}}$
Here \oplus is any binary, associative, and unit time operation. Recall that if \oplus is associative then, for any 3 elements x, y, z it should be true that $(x \oplus y) \oplus z=x \oplus$ $(y \oplus z)=x \oplus y \oplus z$.

Examples:

1. $\quad \Sigma=\mathbb{R}$ and \oplus is addition
2. $\quad \Sigma=\mathbb{R}$ and \oplus is multiplication
3. $\Sigma=2 \times 2$ matrices and \oplus is matrix multiplication
4. $\Sigma=\mathbb{R}$ and \oplus is Min

The best sequential run time $=\mathrm{S}=\mathrm{n}-1$

Algorithms for logarithmic time prefix calculations

Algorithm 1
$\mathrm{P}=\mathrm{n}$ CREW processors
Split your input in 2. Then recursively perform prefix computations on each half. Overall the process works like:

Note: $\mathrm{k}_{2}{ }_{2}=\mathrm{k}_{1}+\mathrm{k}_{2}$
$\mathrm{k}_{3}=\mathrm{k}_{1}+\mathrm{k}_{2}+\mathrm{k}_{3}$ and so on for all to $\mathrm{k}^{\prime}{ }_{n}$

Analysis of this algorithm:
Let $\mathrm{T}(\mathrm{n})$ be the runtime on any input of size n using n processors.

Randomization in Computing Notes-10/27/11
Written up by: Michael Fagan
Then $\mathrm{T}(\mathrm{n})=\mathrm{T} \frac{\mathrm{n}}{2}+\mathrm{O}(1)=\mathrm{O}(\operatorname{logn})$
$\mathrm{PT}=\mathrm{O}(\mathrm{nlogn}) \neq \mathrm{O}(\mathrm{n})$ therefore the algorithm is not work optimal.

A work optimal algorithm:

$\mathrm{P}=\frac{\mathrm{n}}{\log \mathrm{n}}$ CREW PRAM processors
Assign $\log n$ elements to each processor such that the $1^{\text {st }} \log n$ elements go to $p_{1}, 2^{\text {nd }} \log n$ elements go to p_{2}, etc.

1. For $1 \leq \mathrm{i} \leq \frac{\mathrm{n}}{\log \mathrm{n}}$ in $\|$ do

Processor i computes the prefix sums (note: here sum refers to the \oplus operator) of its elements

Let the results be $\mathrm{k}^{\prime}{ }_{1}, \mathrm{k}^{\prime}{ }_{2}, \ldots \mathrm{k}^{\prime}{ }_{\text {logn }} \ldots \mathrm{k}^{\prime}{ }_{\mathrm{n}}$
2. Perform the prefix calculation on ${ }^{\prime}{ }^{\prime}{ }_{l o g n}, \ldots \mathrm{k}^{\prime}{ }_{2 \operatorname{logn}}, \ldots \mathrm{k}^{\prime}{ }_{\mathrm{n}}$

Let the results be $\mathrm{k}{ }^{\prime}{ }_{\text {logn }}, \ldots, \mathrm{k}^{\prime \prime}{ }_{2 \operatorname{logn}}, \ldots \mathrm{k}{ }^{\prime}{ }_{\mathrm{n}}$
3. For $1 \leq \mathrm{i} \leq \mathrm{n}$ in $\|$ do

Processor i pre-adds $\mathrm{k}^{\prime \prime}{ }_{(\mathrm{i}-1) \log \mathrm{n}}$ to every value it computed in step 1

Analysis:

Step 1 takes $\log \mathrm{n}$ time
Step 2 takes $O \log \frac{n}{\log n}=O(\log n)$ time
Step 3 takes $\log \mathrm{n}$ time
Thus total time $=\mathrm{O}(\log n)$
Thus, this algorithm is asymptotically optimal.
Example:
Input: $\mathrm{X}=\mathrm{k}_{1}, \mathrm{k}_{2}, \ldots \mathrm{k}_{\mathrm{n}}$ (a sequence of elements) and an integer y
Output: a rearrangement of X where all the elements $\leq \mathrm{y}$ appear first, followed by all other elements

An example:
$\mathrm{y}=10$

8	11	7	3	15	9	16	2	4

Output:

Randomization in Computing Notes-10/27/11
Written up by: Michael Fagan

8	7	3	9	2	4	11	15	16

The algorithm:
Use a Boolean array $\mathrm{A}[1: \mathrm{n}]$ such that

$$
\begin{aligned}
\mathrm{A}[\mathrm{i}] & =1 \text { if } \mathrm{k}_{\mathrm{i}} \leq \mathrm{y} \\
& =0 \text { otherwise }
\end{aligned}
$$

$$
\text { for all } 1 \leq \mathrm{i} \leq \mathrm{n}
$$

for the example:

1	0	1	1	0	1	0	1	1

Now perform a prefix sums (where sum refers to addition) on the array

1	1	2	3	3	4	4	5	6

Now you can use these prefix values as unique addresses for the elements that are $\leq \mathrm{y}$ and place them in successive cells. We can use another similar prefix computation to place the remaining elements in successive cells.

Can we do prefix calculations in $\mathrm{O}(1)$? Nope!
(Beam and Hastäd 1985)
Theorem: Computing the parity of n bits needs $\Omega\left(\frac{\log n}{\log \log n}\right)$ time on the CRCW PRAM given only a polynomial number of processors.
(Cole and Vishkin 1983)
We can solve the prefix additions problem in $O\left(\frac{\operatorname{logn}}{\log \log n}\right)$ time using $\frac{\text { nloglogn }}{\log n}$ arbitrary CRCW
PRAM processors, provided the elements are integers in the range $\left[1, \mathrm{n}^{\mathrm{c}}\right]$ for any constant c .

Example uses:

Sorting:
$\mathrm{k}_{1}, \mathrm{k}_{2}, \ldots \mathrm{k}_{\mathrm{n}}=\mathrm{X}$
We can sort these in $\mathrm{O}(\log n)$ time using $\frac{\mathrm{n}^{2}}{\log \mathrm{n}}$ CREW PRAM Processors.
This is done by giving each element n processors and letting them calculate its rank, and then outputting the elements in the order of their ranks.

Selection:
Input: $\mathrm{k}_{1}, \mathrm{k}_{2}, \ldots \mathrm{k}_{\mathrm{n}}=\mathrm{X}$ and an i such that $1 \leq \mathrm{i} \leq \mathrm{n}$
Output: The $\mathrm{i}^{\text {th }}$ smallest element of X

Randomization in Computing Notes -10/27/11
Written up by: Michael Fagan

Slow-down Lemma

Lemma: Let A be $\mathrm{a} \|$ algorithm that uses p processors and runs in time T . The same algorithm can be run on p^{\prime} processors in time $\mathrm{O}\left(\frac{\mathrm{pT}}{\mathrm{p}^{\prime}}\right)$ provided $\mathrm{p}^{\prime} \leq \mathrm{p}$.

Proof:
(1) (2) \ldots (p) Old Machine

New Machine

Assign $\frac{\mathrm{p}}{\mathrm{p}}$ processors of the old machine to each of the processors in the new machine. Each step of the old machine can be simulated in $\leq \frac{\mathrm{p}}{\mathrm{p}^{\prime}}$ steps in the new machine.
The runtime on this new machine is $\leq \frac{\mathrm{p}}{\mathrm{p}^{\prime}} \mathrm{T} \leq \mathrm{T} \frac{\mathrm{p}}{\mathrm{p}^{\prime}}+1=0 \frac{\mathrm{pT}}{\mathrm{p}^{\prime}}$.

