
Randomization in Computing Notes - 10/27/11

Written up by: Michael Fagan

1

Help for Homework Problem #9

Let G(V,E) be any undirected graph

We want to calculate the travel time across the graph.

Think of each edge as one resistor of 1 Ohm.

Say we have two nodes: i and j

Let the effective resistance between i and j = Rij = where rx is

the resistance of a path between i and j. Therefore Rij is one over

the sum of one over the resistance of each path from i to j.

Fact: The commute time between i and j is Cij

 Cij = 2mRij where m = |E|

Let the resistance of the graph be R = Max Rij

Fact: The expected cover time C(G) = O(mRlogn)

Fact: The Rij for any 2 nodes ≤ the length of the shortest path between i and j. For example:

Rij = ≤ 2

Fact: For a d-regular graph with n nodes, the diameter ≤

Using all of these facts together, you can solve problem number 9.

Example: Using the facts for a 2-SAT

 Modeled as a random walk on a graph

 m = n

 R = n

Thus C(G) = O(n
2
logn) Note: this is worse than with Markov chains, but this method will

result in a better result with d-regular graphs, as in the HW

Randomization in Computing Notes - 10/27/11

Written up by: Michael Fagan

2

Prefix Calculations

Input: k1, k2, … kn

Output: k1, k1 k2, k1 k2 k3, …, k1 k2 k3 kn

Here is any binary, associative, and unit time operation. Recall that if is

associative then, for any 3 elements x,y,z it should be true that (x y) z = x

(y z) = x y z.

Examples:

1. and is addition

2. and is multiplication

3. 2x2 matrices and is matrix multiplication

4. and is Min

The best sequential run time = S = n – 1

Algorithms for logarithmic time prefix calculations

Algorithm 1

P = n CREW processors

Split your input in 2. Then recursively perform prefix computations on each half. Overall the

process works like:

Note: k’2 = k1 + k2

 k’3 = k1 + k2

+ k3

 and so on for all to k’n

Analysis of this algorithm:

Let T(n) be the runtime on any input of size n using n processors.

Randomization in Computing Notes - 10/27/11

Written up by: Michael Fagan

3

Then T(n) = T + O(1) = O(logn)

PT = O(nlogn) ≠ O(n) therefore the algorithm is not work optimal.

A work optimal algorithm:

P = CREW PRAM processors

Assign log n elements to each processor such that the 1
st
 log n elements go to p1, 2

nd
 log n

elements go to p2, etc.

1. For 1 ≤ i ≤ in || do

Processor i computes the prefix sums (note: here sum refers to the operator) of its

elements

Let the results be k’1, k’2, … k’logn … k’n

2. Perform the prefix calculation on k’logn, … k’2logn, … k’n

Let the results be k”logn, …, k”2logn, … k”n

3. For 1 ≤ i ≤ n in || do

Processor i pre-adds k”(i-1)log n to every value it computed in step 1

Analysis:

Step 1 takes log n time

Step 2 takes O = O(logn) time

Step 3 takes log n time

Thus total time = O(logn)

Thus, this algorithm is asymptotically optimal.

Example:

Input: X= k1, k2, … kn (a sequence of elements) and an integer y

Output: a rearrangement of X where all the elements ≤ y appear first, followed by all other

elements

An example:

y = 10

Output:

8 11 7 3 15 9 16 2 4

Randomization in Computing Notes - 10/27/11

Written up by: Michael Fagan

4

The algorithm:

Use a Boolean array A[1:n] such that

 A[i] = 1 if ki ≤ y

 = 0 otherwise

 for all 1 ≤ i ≤ n

for the example:

Now perform a prefix sums (where sum refers to addition) on the array

Now you can use these prefix values as unique addresses for the elements that are ≤ y and place

them in successive cells. We can use another similar prefix computation to place the remaining

elements in successive cells.

Can we do prefix calculations in O(1)? Nope!

(Beam and Hastäd 1985)

Theorem: Computing the parity of n bits needs Ω time on the CRCW PRAM given only

a polynomial number of processors.

(Cole and Vishkin 1983)

We can solve the prefix additions problem in time using arbitrary CRCW

PRAM processors, provided the elements are integers in the range [1, n
c
] for any constant c.

Example uses:

Sorting:

k1, k2, … kn = X

We can sort these in O(log n) time using CREW PRAM Processors.

This is done by giving each element n processors and letting them calculate its rank, and then

outputting the elements in the order of their ranks.

Selection:

Input: k1, k2, … kn = X and an i such that 1 ≤ i ≤ n

Output: The i
th

 smallest element of X

8 7 3 9 2 4 11 15 16

1 0 1 1 0 1 0 1 1

1 1 2 3 3 4 4 5 6

Randomization in Computing Notes - 10/27/11

Written up by: Michael Fagan

5

Slow-down Lemma

Lemma: Let A be a || algorithm that uses p processors and runs in time T. The same algorithm

can be run on p’ processors in time provided p’ ≤ p.

Proof:

Old Machine

New Machine

Assign processors of the old machine to each of the processors in the new machine. Each

step of the old machine can be simulated in ≤ steps in the new machine.

The runtime on this new machine is .

