CSE 6512 -- Lecture 15

Notes by Son Le

Approximate Matrix multiplication

$$C = A \times B$$

For all (i, j), to compute C_{ij} ,

- Pick s columns randomly from matrix A, let them be $c_1, c_2, ..., c_s$.
- Output $C_{ij} = \frac{n}{s} \sum_{q=1}^{s} A_{i,c_q} B_{c_q,j}$

Consider the case of A and B being Boolean. Note that C is not Boolean, for example:

$$\begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 2 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 3 & 2 & 3 \end{bmatrix}$$

If $C_{ij}=q$ then there are q matching 1's in row i of A and column j of B. If we pick s columns randomly from row i of A, the expected number of these columns that are among the above q columns is $\frac{sq}{n}$. Using Chernoff bounds, the number of matching columns in the sample is in the range $\left[\frac{sq}{n}-c\alpha\sqrt{\frac{sq}{n}\log n},\,\frac{sq}{n}+c\alpha\sqrt{\frac{sq}{n}\log n}\right]$ with probability $\geq 1-n^{-\alpha}$, c being a constant.

The error in the output is in the range $\left[-c\alpha\sqrt{\frac{nq}{s}\log n}\,,\;c\alpha\sqrt{\frac{nq}{s}\log n}\right]$ with probability $\geq 1-n^{-\alpha}$.

The runtime of this algorithm is $O(n^2s)$.

Primality testing

- **Input:** an integer *n*
- **Output:** *yes* if *n* is prime; *no* otherwise.

Fact:

A trivial algorithm takes $O(\sqrt{n})$ time.

Fermat's theorem (1640):

If p is prime then $a^{p-1} \equiv 1 \pmod{p}$ for any a < p.

Note that this is not an if-and-only-if statement. There are composite numbers (e.g., Carmichael numbers) for which the above holds for every a < p. An example Carmichael number is 561.

Miller-Rabin's algorithm

Computing x^n

Let $n = \overline{b_k b_{k-1} \dots b_1 b_0}$, where $b_i \in \{0, 1\}$.

$$x^{n} = x^{\sum_{i=0}^{k} b_{i} 2^{i}} = \prod_{i=0}^{k} x^{b_{i} 2^{i}} = \prod_{\substack{i=0 \ b_{i}=1}}^{k} x^{2^{i}}$$

The algorithm

Witness(a, n)

```
a is the random number that we pick and n is the input integer. Let n-1=\overline{b_kb_{k-1}\dots b_1b_0} result \coloneqq 1; For q\coloneqq k downto 0 do y\coloneqq result; \\ result \coloneqq (result*result) \bmod n; \\ \text{If } result = 1, y \neq 1, y \neq n-1 \text{ then} \\ \text{Return true}; \\ \text{If } b_q = 1 \text{ then } result \coloneqq (result*a) \bmod n; \\ \text{Return } result \neq 1
```

Note that \mathbb{Z}_n can have only two solutions for x in $x^2 \mod n = 1$ if n is prime, since \mathbb{Z}_n will be a field when n is a prime.

Check_if_prime(n)

```
For i\coloneqq 1 to \alpha\log n do Pick a random integer a< n; If witness(a,n) then output "n is composite" and quit; Output "n is prime"
```

Theorem:

For any composite integer n, the number of witnesses is $\geq \frac{n-1}{2}$.

Therefore, if n is composite, the probability that a random number a < n is not a witness is $\leq \frac{1}{2}$. The probability that none of the $\alpha \log n$ chosen integers is a witness is $\leq \left(\frac{1}{2}\right)^{\alpha \log n} = n^{-\alpha}$.

The probability of an incorrect answer of Check_if_prime is $\leq n^{-\alpha}$.

The runtime of Check_if_prime is $O(\log^2 n)$.

Note that if the input integer is a prime, then the above algorithm will never give an incorrect output. Thus this algorithm has one-sided error.