CSE 6512 Lecture 14 Notes

Asa Thibodeau

October 13, 2011

Let $G(V, E)$ be an undirected connected and non-bipartite graph on which we are interested in performing a random walk.

Definition.

- $h_{i j}$ is the expected time to visit node j starting from node i.
- Commute time between i and j is $h_{i j}+h_{j i}$.
- Let $C_{i}(G)$ be the expected time to visit each node at least once starting from node i.
- Cover Time, $C(G)=\max _{i \in V} C_{i}(G)$.

Lemma. For any edge $(i, j) \in E, h_{i j}+h_{j i} \leq 2 m$ where $m=|E|$.
Proof. Let G^{\prime} be a directed graph obtained from G by replacing every edge of G with two directed edges:

Construct a Markov Chain $M_{G^{\prime}}$ where each edge of G^{\prime} is a state.

$Q_{<i, j><j, k>}=\frac{1}{d_{j}}$, where d_{j} is the degree of node j in G.

$$
Q_{<a, b><c, d>}= \begin{cases}\frac{1}{d_{b}} & \text { if } b=c \\ 0 & \text { otherwise }\end{cases}
$$

Fact. Q is Doubly Stochastic, i.e., The sum of any row is $1 \&$ the sum of any column is 1 .

To see this, consider column $n_{<j, k>}$

$$
\text { Column Sum }=\sum_{\forall x, y \in V} Q_{<x, y><j, k>}=\sum_{<i, j>\in E^{\prime}} Q_{<i, j><j, k>}=\sum_{<i, j>\in E^{\prime}} \frac{1}{d_{j}}=1 .
$$

Fact. If the transition probability matrix of a Markov Chain is doubly stochastic, then its stationary distribution is uniform, i.e., all the entries are the same.

Note. \# of states $=2 \mathrm{~m}$.
$\Rightarrow \Pi=\left(\frac{1}{2 m}, \frac{1}{2 m}, \ldots\right)$
\Rightarrow The expected time to traverse the same edge $\langle j, i\rangle$ twice is $2 m$.
\Rightarrow If we traverse the edge $\langle j, i\rangle$ at some point in time, the expected time to traverse it again is $2 m$.

Assume that the node i is reached via the edge $\langle j, i\rangle$.

The Markov Chain is memoryless. Also, the node i could have been reached via some other edge as well.
\Rightarrow The time from i to j to i is $\leq 2 m$.

Lemma. $C(G) \leq 2 m(n-1)$.
Proof. Let T be any spanning tree for G.
Consider the Euler Path for this tree:

Let this path be $i, i_{1}, i_{2}, \ldots, i_{2 n-2}=i$
$C_{i}(G) \leq h_{i i_{1}}+h_{i_{1} i_{2}}+h_{i_{2} i_{3}}+\ldots h_{i_{2 n-3} i_{2 n-2}}$
$=\sum_{(i, j) \in T} h_{i j}+h_{j i}=2 m(n-1)$.
$\Rightarrow C(G)=\max _{i \in V} C_{i}(G) \leq 2 m(n-1)$.

Corollary 1. The expected run time of our 2SAT randomized algorithm is $O\left(n^{2}\right)$.

Corollary 2. $C(G)$ for K_{n} is $O\left(n^{3}\right)$.
But we have proved a much better bound!

Corollary 3.

Problem: (Reachability)
Input: A Graph $G(V, E)$ and $a, b \in V$. Question: "Is b reachable from a?"

Fact. Reachability \in RLP.
Definition. A problem is in RLP if \exists a randomized algorithm that uses only $O(\log n)$ work space such that $\operatorname{Prob}[x$ is correct $]$ is $\geq \frac{1}{2}$ if $x \in L$ and $\operatorname{Prob}[x$ is correct] is 0 if $x \notin L$. Here the problem under concern is that of deciding if x is a member of the language L or not.

Proof. Do a random walk starting from a for $4 m(n-1)$ steps.
Output "yes" if b has been seen, and "no" otherwise.
Using Markov's inequality, the probability of an incorrect answer is $\leq \frac{1}{2}$.

Approximate Matrix Multiplication:

Consider the problem of adding n numbers $x_{1}, x_{2}, . ., x_{n}$.
A randomized algorithm for this problem works as follows. Pick a random sample S, with $|S|=s$. Let the sample be $y_{1}, y_{2}, \ldots, y_{s}$.

$$
\text { Output: } \frac{n}{s} \sum_{i=1}^{s} y_{i} .
$$

Analysis.
Expected value of a random element $=\frac{1}{n} \sum x_{i}$.

$$
E\left[\sum_{i=1}^{s} y_{i}\right]=\frac{s}{n} \sum_{i=1}^{n} x_{i} . \Rightarrow E\left[\frac{n}{s} \sum_{i=1}^{s} y_{i}\right]=\sum_{i=1}^{n} x_{i} .
$$

Approximate Matrix Multiplication (R. Kannan, et. al. 2005)

Pick s columns randomly from A;
Use the same rows in B.

Perform the multiplication of $A \& B$ only with respect to these columns \& rows. Finally, multiply each element in the product by $\frac{n}{s}$.

Clearly, the answer output by this algorithm is correct in expectation!

