Lecture 13

Notes by Jerlin C Merlin

MARKOV CHAINS

A Markov Chain is a discrete time stochastic process characterized by S, a set of states and P, a transition probability matrix.

S could either be finite or <u>countably</u> infinite:

$$S = \{s_1, s_2, s_3, ...\}$$

 P_{ij} - the probability that the next state is j, given that the current state is i.

Let X_t be the state of the Markov Chain at time step t.

Markov Chain is memoryless.

i.e., Probability $[X_t = j/X_{t-1}=i, X_{t-2}=i_1, ..., X_0 = i_{t-1}] = Probability [X_t = j/X_{t-1}=i] = P_{ij}$

 $P_{ii}^{(t)}$ is known as the t-step probability, where

$$P_{ii}^{(t)} = Probability [X_t = j/X_0 = i]$$

Definition:

Let $r_{ij}^{(t)}$ be the probability that the state of the Markov Chain at step t is j and $X_0 = i$ and state j has not been visited in the steps 1, 2, ..., t-1.

Let f_{ij} be the probability that the state j will ever be visited if $X_0 = i$.

$$f_{ij} = \sum_{t>0}^{\sum} r_{ij}^{(t)}$$

Definition:

Let h_{ij} be the expected time to visit state j starting from state i at step 0.

$$h_{ij} = \sum_{t>0}^{\Sigma} t r_{ij}^{(t)}$$

<u>*Note:*</u> if $f_{ij} < 1$ then $h_{ij} = \infty$.

Definition:

If $f_{ii} < 1$ for any state i, then it is said to be TRANSIENT. If $f_{ii} = 1$ for state i, then it is said to be PERSISTENT.

Definition:

If for any state i, $f_{ii} = 1$ and $h_{ii} = \infty$, then the state is NULL-PERSISTENT.

Definition:

If for any state i, $f_{ii} = 1$ and $h_{ii} < \infty$, then the state is NON-NULL PERSISTENT.

FACT:

In any finite Markov Chain, each state is either TRANSIENT or NON-NULL PERSISTENT.

FACT:

We can use a directed graph to represent a Markov Chain. Nodes → States

 \exists an edge from i to j in G(V, E) if P_{ij} is > 0.

Definition:

In a directed graph, a STRONG COMPONENT refers to a Maximal subgraph in which there is a directed path from every node to every other node.

Definition:

In a directed graph, a FINAL STRONG COMPONENT refers to a STRONG COMPONENT such that there is no edge going from a node in this component to a node outside this component.

FACT:

If M is a finite Markov Chain, and C is a STRONG COMPONENT, then \exists a non-zero probability of starting from any node of C and reaching any other node in C in a finite number of steps.

If C is a FINAL STRONG COMPONENT, then this probability is 1.

FACT:

If a Markov Chain consists of a single STRONG COMPONENT, then all the states are PERSISTENT. We call this Markov Chain as IRREDUCIBLE.

Definition:

The state probability vector of a Markov Chain at step t is denoted as

$$q^{(t)} = (q_1^{(t)}, q_2^{(t)}, ..., q_n^{(t)})$$

where, $q_i^{(t)}$ = probability that the state of the Markov Chain at step t is i, for $1 \le i \le n$.

FACT:

$$q^{(t+1)} = \; q^{(t)} \mathsf{P}$$
 where P is the probability transition matrix. This implies that, $q^{(t)=} \; q^{(0)} \; \mathsf{P}^t.$

Definition:

The stationary probability distribution π satisfies:

 $\pi = \pi P$

Definition:

The periodicity of a state i is the largest T such that if $q_i^{(t)} > 0$, then $t \in \{a+qt : q \ge 0\}$, for some integer a.

If T = 1 for any state, then the state is APERIODIC.

Definition:

A Markov Chain is APERIODIC if all of its states are APERIODIC.

Definition:

A state of a Markov Chain is ERGODIC if it is APERIODIC and NON-NULL PERSISTENT.

Definition:

A Markov Chain is ERGODIC if all of its states are ERGODIC.

THEOREM:

For any FINITE, APERIODIC and IRREDUCIBLE Markov Chain, the following are true:

- 1) All the states are ERGODIC.
- 2) \exists a unique stationary probability distribution π , such that,

 $\pi = (\pi_1, \pi_2..., \pi_n)$ with $\pi_i > 0, 1 \le i \le n$.

3) For every state i, f_{ii} = 1, and h_{ii} = (1/ $\pi_i),$ and

4) $\forall_i \pi_i = \lim_{t \to \infty} \frac{N(i,t)}{t}$, where N(i,t) is the number of times the state of Markov Chain was i in t successive time steps.

RANDOM WALKS ON GRAPHS:

Let G(V,E) be any connected, undirected and non-bipartite graph. We can construct a Markov Chain M_G as follows:

State set = V.

If $(u,v) \in E$, then $P_{uv} = \frac{1}{d_u}$ where d_u is the degree of the node u.

$M_{G,} S = \{1, 2, 3, 4, 5\}$					
Р					
	1	2	3	4	5
4	0	1 / 2	0	1 / 2	1 / 2
T	0	1/3	0	1/3	1/3
2	1/4	0	1/4	1/4	1/4
3	0	1/2	0	1/2	0
4	1/4	1/4	1/4	0	1/4
5	1/3	1/3	0	1/3	0

Note: M_G is FINITE and IRREDUCIBLE.

Since G is a non bipartite, it has a cycle of odd length. Also, it has a cycle of length 2.

The PERIOD is the GCD of cycle lengths. Thus the period is 1. This implies that $M_{\rm G}\,\textsc{is}$ APERIODIC.

Applying the theorem, M_G has a unique stationary probability distribution.

LEMMA:

 M_G has a unique π where $\pi_u = \frac{d_u}{2m'}$ for $u \in V$.

PROOF:

$$\sum_{u \in V} \pi_u = \frac{\sum_{u \in V} d_u}{2m} = \frac{2m}{2m} = 1$$

Let n = |V|

$$[\pi P]_{u} = \pi_{1} P_{1u} + \pi_{2} P_{2u} + \dots + \pi_{n} P_{nu}$$
$$= \sum_{(w,u) \in E} \pi_{w} P_{wu}$$
$$= \sum_{(w,u) \in E} \frac{d_{w}}{2m} \cdot \frac{1}{d_{w}}$$
$$= \frac{1}{2m} \sum_{(w,u) \in E} 1$$
$$= \frac{d_{u}}{2m}$$

FACT:
$$h_{uu} = \frac{1}{\pi_u} = \frac{2m}{d_u}$$