CSE 6512 Lecture 12 Notes

Taken by Levon Nazaryan
October 06, 2011

1 FINDING A MIN-CUT

Input: $G(V, E)$, AN UNDIRECTED MULTIGRAPH.
Output: A MIN-CUT
Definition: A cut is a set of edges whose removal results in 2 or more components. A MINCUT is a cut of minimum size.

A RANDOMIZED ALGORITHM.

CONTRACTION: Pick a random edge (a, b) and merge a and b. All the edges incident on a and b will be preserved.

Each contraction results in one less node. Also the size of the min-cut does not change with contractions. Do $(n-2)$ such contractions, until only 2 nodes remain. Output the edges between them.

Example:

\Rightarrow Pick $(5,3)$

Analysis: Let k be the size of the min-cut, and let $C=\left\{e_{1}, e_{2}, \cdots, e_{k}\right\}$ be a min-cut. We'll calculate the probability that the cut output by the above randomized algorithm is C. Note that the number of edges in G is $\geq \frac{k_{n}}{2}$. Otherwise, it will mean that the degree of at least one node is less than k and if we remove the edges incident on this node we'll get at least two components.

Let E_{i} be the event that the edge picked in contraction i is not from C.
What is $\operatorname{Prob}\left[\bigcap_{i=1}^{n-2} E_{i}\right]$?
$\operatorname{Prob}\left[\bar{E}_{1}\right] \leq \frac{k}{\frac{n k}{2}}=\frac{2}{n}$. This implies that $\operatorname{Prob}\left[E_{1}\right] \geq 1-\frac{2}{n}$.
After the first contraction, the number of nodes is $(n-1)$.
Number of edges in the reduced graph is $\geq \frac{k(n-1)}{2}$.
$=>\operatorname{Prob}\left(\overline{E_{2}} / E_{1}\right) \leq \frac{2}{n-1}$. As a result, $\operatorname{Prob}\left(E_{2} / E_{1}\right) \geq 1-\frac{2}{n-1}$
$=>\operatorname{Prob}\left[E_{i} / \bigcap_{j=1}^{i-1} E_{j}\right] \geq 1-\frac{2}{n-i+1}$.
Fact: $\operatorname{Prob}\left(E_{1} \cap E_{2}\right)=\operatorname{Prob}\left(E_{1}\right) \cdot \operatorname{Prob}\left(E_{2} / E_{1}\right)$.
$\operatorname{Prob}\left[\bigcap_{i=1}^{n-2} E_{i}\right] \geq\left(1-\frac{2}{n}\right)\left(1-\frac{2}{n-1}\right) \cdots\left(1-\frac{2}{3}\right)$
RHS $=\frac{(n-2)}{n} \frac{(n-3)}{(n-1)} \frac{(n-4)}{(n-2)} \frac{(n-5)}{(n-3)} \cdots \frac{1}{3}=\frac{2}{n(n-1)} \geq \frac{2}{n^{2}}$

Algorithm:

for $i:=1$ to q do
Repeat the contraction process $(n-2)$ times to find a cut.
Keep the min seen so far.
Output the min-cut seen.
Probability of finding C in 1 iteration is $\geq \frac{2}{n^{2}}$
\Rightarrow Probability of not finding C in one iteration is $\leq\left(1-\frac{2}{n^{2}}\right)$
$=>$ Probability of not seeing C in q iterations is $\leq\left(1-\frac{2}{n^{2}}\right)^{q}$
We want this to be $\leq n^{-\alpha} \Rightarrow\left(1-\frac{2}{n^{2}}\right)^{q}=n^{-\alpha}$
i.e., $e^{-q \frac{2}{n^{2}}}=n^{-\alpha}=>-q \frac{2}{n^{2}}=-\alpha \log n=>q=\frac{1}{2} n^{2} \alpha \log n$

2 RANDOM WALKS ON GRAPHS

Input: $G(V, E) \rightarrow$ undirected.
We start from a node u. Then go to a random neighbour of u. From there go to a random neighbour, and so on.

Questions:

1. How much time does it take before each node is visited at least once?
2. If we start from a node u how long will it take to visit another specific node w ?

Example: Let K_{n} be a complete graph on n nodes. If we start from u, the expected number of steps before visiting $w=(n-1)$.

How long does it take before each node is visited at least once?

TIME \rightarrow
Let X_{w} be the time needed to visit w.
$E\left[X_{w}\right]=(n-1)=\mu$
$\operatorname{Prob}\left[X_{w} \geq 2 \mu\right] \leq \frac{1}{2}$ using Markov's inequality.
Probability of not visiting w in any one of the phases is $\leq \frac{1}{2}$.
$=>\operatorname{Prob}[$ not visiting w in $(\alpha+1) \log n$ phases $] \leq\left(\frac{1}{2}\right)^{(\alpha+1) \log n}=n^{-(\alpha+1)}$
$=>\operatorname{Prob}[\exists \mathrm{w}$ that has not been visited in the FIRST $\log n(\alpha+1)$ phases $] \leq n^{-\alpha}$
$=>$ The time needed to visit all the nodes is $\widetilde{O}(n \log n)$.

Example: 2 SAT

Input: $F=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$
Let $S=\left\{s_{1}, s_{2}, \cdots, s_{n}\right\}$ be a specific satisfying assignment. Call these values as correct values.

A Randomized Algorithm works as follows:
0) Start from a random assignment.

1) Pick a random clause which is not satisfied.
2) Pick a literal in it randomly and change its value.
3) Repeat steps 1 and 2 until a satisfying assignment is found.

May start from here

NUMBER OF CORRECT VALUES FOUND \rightarrow

Note that this corresponds to a Random Walk in the above graph. The algorithm terminates when the node n is visited for the first time (or possibly before since there could be other satisfying assignments).

Fact: The expected RUN TIME of this algorithm is $O\left(n^{2}\right)$. This will be proven soon.

