
CSE 6512 Lecture 12 Notes

Taken by Levon Nazaryan
October 06, 2011

1 FINDING A MIN-CUT

Input: ! !,! , AN UNDIRECTED MULTIGRAPH.
Output: A MIN-CUT

Definition: A cut is a set of edges whose removal results in 2 or more components. A MIN-
CUT is a cut of minimum size.

A RANDOMIZED ALGORITHM.

CONTRACTION: Pick a random edge (!, !) and merge ! and !. All the edges incident on
! and ! will be preserved.

Each contraction results in one less node. Also the size of the min-cut does not change with
contractions. Do (! − 2) such contractions, until only 2 nodes remain. Output the edges
between them.

Example:

	

	

	

a	
 b	
 ab	
 =>	

1	
 2	

3	

4	

5	

6	

ð Pick	
 (5,3)	

ð Pick	
 (6,3)	
 ð Pick	
 (1,2)	

1	
 2	

4	

3	

ð Pick	
 (2,3)	

1	

4	

2	

1	

4	

1	
 2	

4	

3	

6	

	

Analysis: Let ! be the size of the min-cut, and let ! = !!, !!,⋯ , !! be a min-cut. We’ll
calculate the probability that the cut output by the above randomized algorithm is C. Note
that the number of edges in ! is ≥ !!

!
. Otherwise, it will mean that the degree of at least one

node is less than k and if we remove the edges incident on this node we’ll get at least two
components.

Let !! be the event that the edge picked in contraction ! is not from !.

What is !"#$!!!!!

!!! ?

!"#$!! ≤
!
!"
2
=
2
! .This implies that !"#$!! ≥ 1−

2
!.

After the first contraction, the number of nodes is (! − 1).

Number of edges in the reduced graph is ≥ !(!!!)

!
.

=> !"#$!!/!! ≤
2

! − 1 . As a result,!"#$!!/!! ≥ 1−
2

! − 1

=> !"#$!!/ !!!!!

!!! ≥ 1− !
!!!!!

.

Fact: !"#$!! !! = !"#$!! ∙ !"#$!!/!! .

!"#$!!

!!!

!!!

≥ 1−
2
! 1−

2
! − 1 ⋯ 1−

2
3

RHS = (!!!)

!
(!!!)
(!!!)

(!!!)
(!!!)

(!!!)
(!!!)

⋯ !
!
= !

!(!!!)
≥ !

!!

Algorithm:

for ! ≔ 1 to ! do

Repeat the contraction process (! − 2) times to find a cut.
Keep the min seen so far.

Output the min-cut seen.

Probability of finding ! in 1 iteration is ≥ !

!!

=> Probability of not finding ! in one iteration is ≤ 1− !
!!

=> Probability of not seeing ! in ! iterations is ≤ 1− !
!!

!

We want this to be ≤ !!! => 1− !
!!

!
= !!!

i.e., !!!
!
!! = !!! => −! !

!!
= −! log! => ! = !

!
!!! log! █■

2 RANDOM WALKS ON GRAPHS
Input: !(!,!) → undirected.
We start from a node !. Then go to a random neighbour of !. From there go to a random
neighbour, and so on.

Questions:

1. How much time does it take before each node is visited at least once?
2. If we start from a node u how long will it take to visit another specific node !?

Example: Let !! be a complete graph on ! nodes.
If we start from !, the expected number of steps
before visiting ! = ! − 1 .

How long does it take before each node is visited at least once?

TIME →

Let !! be the time needed to visit !.
! !! = ! − 1 = !
!"#$!! ≥ 2! ≤ !

!
 using Markov’s inequality.

Probability of not visiting ! in any one of the phases is ≤ !

!
.

=> !"#$!"# !"#"$"%& ! !" (! + 1) log! !ℎ!"#" ≤ !
!

(!!!) !"#!
= !!(!!!)

=> !"#$ ∃ ! !ℎ!" ℎ!" !"# !""# !"#"$%& !" !ℎ! !"#$% log! ! + 1 !ℎ!"#" ≤ !!!

=> The time needed to visit all the nodes is ! ! log! .

Example: 2 SAT
Input: ! = !! ∧ !! ∧⋯∧ !!
Let ! = !!, !!,⋯ , !! be a specific satisfying assignment. Call these values as correct
values.

A Randomized Algorithm works as follows:

0) Start from a random assignment.
1) Pick a random clause which is not satisfied.
2) Pick a literal in it randomly and change its value.
3) Repeat steps 1 and 2 until a satisfying assignment is found.

!	

!	

!!	

Phase 1 Phase 2 .	
 	
 .	
 	
 .	

1 2 . . . 2(n-1) . . . 4(n-1)

 May start from here

0 1 2 3 . . . n

NUMBER OF CORRECT VALUES FOUND →

Note that this corresponds to a Random Walk in the above graph. The algorithm terminates
when the node n is visited for the first time (or possibly before since there could be other
satisfying assignments).

Fact: The expected RUN TIME of this algorithm is ! !! . This will be proven soon.

