CSE 6512 Lecture 12 Notes

Taken by Levon Nazaryan
October 06, 2011

1 FINDING A MIN-CUT

Input: G(V,E), AN UNDIRECTED MULTIGRAPH.
Output: A MIN-CUT

Definition: A cut is a set of edges whose removal results in 2 or more components. A MIN-
CUT is a cut of minimum size.

A RANDOMIZED ALGORITHM.

CONTRACTION: Pick a random edge (a, b) and merge a and b. All the edges incident on
a and b will be preserved.

Each contraction results in one less node. Also the size of the min-cut does not change with
contractions. Do (n — 2) such contractions, until only 2 nodes remain. Output the edges
between them.

Example:

° = Pick (5,3)

= Pick (6,3) ' o recs) a = Pick (1,2) z

Analysis: Let k be the size of the min-cut, and let C = {e;, e,, **, €, } be a min-cut. We’ll
calculate the probability that the cut output by the above randomized algorithm is C. Note

that the number of edges in G is > k;” Otherwise, it will mean that the degree of at least one

node is less than £ and if we remove the edges incident on this node we’ll get at least two
components.

Let E; be the event that the edge picked in contraction i is not from C.

What is Prob[N1-7 E;]?

nk

2
After the first contraction, the number of nodes is (n — 1).

_ k 2 2
ProblE|] < — = - This implies that Prob[E;] = 1 — -

Number of edges in the reduced graph is > @

_ 2 2
=> Prob(E,/E,;) < ——. Asaresult, Prob(E,/E;) =21 ———
n—1 n—1
2
n—i+1’

=> Prob|E;/ N'Z1E] =1 -

Fact: Prob(E; N E;) = Prob(E,) - Prob(E,/E;).

2 (1= (-2~ (-3)

_ (n—=2) (n-3) (n—4) (n-5) L1 2 > 2

n-—2

s

i=1

Prob

RHS n (n-1) (n-2)(m-3) 3 n(m-1) n2?

Algorithm:

fori:=1toqdo
Repeat the contraction process (n — 2) times to find a cut.
Keep the min seen so far.

Output the min-cut seen.

Probability of finding C in 1 iteration is = —
n

=> Probability of not finding C in one iteration is < (1 - %)

=> Probability of not seeing C in q iterations is < (1 - %)

q
We want thistobe < n ™% => (1 - %) =n
2

—g-= 1
ie,e mZ=n"% => —q%=—alogn => q=5n2alogn |

2 RANDOM WALKS ON GRAPHS

Input: G(V, E) — undirected.

We start from a node u. Then go to a random neighbour of u. From there go to a random
neighbour, and so on.

Questions:
1. How much time does it take before each node is visited at least once?
2. If we start from a node u how long will it take to visit another specific node w?

Example: Let K, be a complete graph on n nodes.

If we start from u, the expected number of steps
before visiting w = (n — 1). K,

How long does it take before each node is visited at least once?

l& Phase 1 l Phase 2 %l Coe
1 2 ... 2(m-1) ... 4(n-1)
TIME —

Let X,, be the time needed to visit w.
E[Xw] =(n-1D=u
ProblX, = 2u] < %using Markov’s inequality.

Probability of not visiting w in any one of the phases is < %
1)(oz+1) logn

- — n—(a+1)
2

=> Prob[not visiting w in (a + 1) logn phases] < (
=> Prob[3 w that has not been visited in the FIRST logn (a + 1) phases] < n™¢

=> The time needed to visit all the nodes is 0 (nlogn).

Example: 2 SAT

Imput: F = C, AC, A=A Cy,

Let S = {s4,s,, -+, s, } be a specific satisfying assignment. Call these values as correct
values.

A Randomized Algorithm works as follows:
0) Start from a random assignment.
1) Pick a random clause which is not satisfied.
2) Pick a literal in it randomly and change its value.
3) Repeat steps 1 and 2 until a satisfying assignment is found.

May start from here

® l l l e
0 1 2 3 ... n

NUMBER OF CORRECT VALUES FOUND —
Note that this corresponds to a Random Walk in the above graph. The algorithm terminates
when the node 7 is visited for the first time (or possibly before since there could be other

satisfying assignments).

Fact: The expected RUN TIME of this algorithm is 0(n?). This will be proven soon.

