CSE 6512 Lecture 11 Notes

Jingxin Sun

October 4th 2011

EXPANDER GRAPHS:

<u>DEFN</u>: A (n, d, α , C) OR-concentrator is a bipartite multigraph G(L, R, E), with |L| = |R| = n. The degree of each node in L is d. For every subset S of L with $|S| \le \alpha n$, $|\Gamma(S)|$ is $\ge C|S|$ where $\Gamma(S) = \text{Neighbor set of } S$.

We want d, α , and C to be constants.

LEMMA: $\forall n \geq n_0, \exists \ a \ (n, 18, \frac{1}{3}, 2)$ OR-concentrator.

PROOF:

Let S be a specific subset of L.

Let T be a specific subset of R of size Cs, where s = |S|.

Generate the edges randomly (with replacement).

Prob[T contains all the neighbors of S] = $(\frac{Cs}{n})^{ds}$

 $\Rightarrow Prob[\exists \ a \ T \ of \ size \ C|S| \ that \ contains \ all \ the \ neighbors \ of \ S] \leq {n \choose Cs} {Cs \choose n}^{ds}$

 \Rightarrow Prob[\exists a subset S of size s all of whose neighbors are

contained in some subset T of size Cs] $\leq {n \choose s} {n \choose Cs} {cs \choose n}^{ds}$

We have $\binom{a}{b} \approx (\frac{ae}{b})^b$.

RHS
$$\approx (\frac{ne}{s})^{s}(\frac{en}{Cs})^{Cs}(\frac{Cs}{n})^{ds} = P_{s}$$

 $P_s = n^{s+Cs-ds} s^{ds-Cs-s} e^{s+Cs} C^{ds-Cs}$

$$= [(\frac{s}{n})^{d-C-1}e^{1+C}C^{d-C}]^{s}$$

$$\leq \left[(\frac{1}{3})^{d-C-1} e^{1+C} C^{d-C} \right]^{s} \leq \left[(3e)^{1+C} \left(\frac{C}{3} \right)^{d} \right]^{s}$$

$$<\left(\frac{1}{2}\right)^s$$

 \Rightarrow Prob[\exists a subset S of size $\leq \alpha n$ S.T. its neighbor set is of size $\leq Cs$]

$$\leq \sum_{s=1}^{\alpha n} P_s < \sum_{s=1}^{\alpha n} (\frac{1}{2})^s \leq \frac{\frac{1}{2}}{1 - \frac{1}{2}} = 1$$

- \Rightarrow This prob is < 1
- \Rightarrow The complement prob is $> 0 \Rightarrow Prob[G \text{ is an } OR concentrator] > 0$
- $\Rightarrow \exists \ a \ (n, 18, \frac{1}{3}, 2) \ OR concentrator.$ End of Proof.

LOVASZ LOCAL LEMMA:

Let $E_1, E_2, ..., E_n$ be events with $Prob[E_i] \le p, \forall i$ and each E_i is independent of all the other events except for d of them.

If $ep(d+1) \le 1$

then $Prob[\bigcap_{i=1}^{n} \overline{E}_{i}] > 0$.

EXAMPLE:

Let $F = C_1 \wedge C_2 \wedge ... \wedge C_m$ be a K-CNF Boolean Formulas with $|C_i| = K$, $\forall i$. Assume that each of the n variables occurs in at most $2^{\frac{k}{10}}$ clauses. Then \exists a satisfying assignment for F.

PROOF:

Give a random assignment to the variables.

Let E_i be the event that C_i is not satisfied.

$$Prob(E_i) = 2^{-k}, \forall i.$$

An event E_i might depend on another event E_i only if C_i and C_i share a common variable.

 \Rightarrow Any event might depend on at most $k2^{k/10}$ other events.

"
$$ep(d+1)$$
 " = $e \cdot 2^{-k} (k2^{k/10} + 1) \le 1$

$$\Rightarrow Prob[\bigcap_{i=1}^{m} \overline{E}_{i}] > 0$$

 \Rightarrow F is satisfiable. **End of Proof.**

EXAMPLE:

A tournament on n nodes is a complete graph G(V, E). Each node is a player. $\langle i, j \rangle \in E$ if player i has defeated player j. We say that the tournament has property P_k if for every subset of k players \exists another player who has defeated all the k players.

LEMMA:

For every k there is a finite tournament with property P_k .

PROOF:

Consider a tournament of size n where the edges have been generated randomly. Let X be a specific set of k players. Let y be another player.

 $Prob[y \ has \ defeated \ all \ the \ players \ of \ X] = 2^{-k}$

- \Rightarrow Prob[y has not defeated X] = $(1 2^{-k})$
- \Rightarrow Prob[none of the other players defeated X] $\leq (1-2^{-k})^{n-k}$
- $\Rightarrow Prob[\exists X with |X| = k$,

s.t.none of the other players defeated
$$X$$
] $\leq {n \choose k} (1 - 2^{-k})^{n-k}$

If this *prob* is < 1 then it means that $Prob[G \ satisfies \ P_k] > 0$.

What is the min. value of n for which $\binom{n}{k}(1-2^{-k})^{n-k} < 1$?

$$(\frac{en}{k})^k e^{-(n-k)2^{-k}} < 1$$

$$ie \left(\frac{en}{k}\right)^k < e^{n2^{-k}}$$

Take \log_e of both sides.

$$\Rightarrow \frac{n}{\log_e n} > k2^k$$

 $n = \Omega(k^2 2^k)$. End of Proof.