CSE6512 Lecture 10 Notes

Manal Alharbi September 29, 2011

1. Searching in O(1) time (M. Ajtai, J. Komlõs & E. Szemerêdi, 1985).

We continue our discussion on devising a data structure for a static input set such that searching for any element can be done in O(1) time. Two levels of hashing will be employed to store the input set.

Input: $S = \{ k_1, k_2, ..., k_s \} \subseteq M$.

Let
$$M = \{0, 1, \dots, m-1\}$$
 and $N = \{0, 1, \dots, m-1\}$.

W.L.O.G., Let
$$p=(m+1)$$
 be a prime number. $\mathbb{Z}_p=\{0,1,\ldots,p-1\}$.

For any $1 \le k \le m$, let $h_k(x) = kx \mod p \mod n$.

Let $V \subseteq M$ be any set where |V| = v.

Let $B_i(k, n, V)$ be the set of elements of V that are hashed into i by h_k , for $i \in N$.

$$B_i(k, n, V) = \{x \in V: h_k(x) = i, i = 0, 1, \dots, n-1\}.$$

Let
$$|B_i(k, n, V)| = b_i(k, n, V)$$
.

Lemma. $\sum_{k=1}^{m} \sum_{i=0}^{n-1} {b_i(k,n,V) \choose 2} < \frac{mv^2}{n}$ for all $V \subseteq M$ and n > v.

Corollary.
$$\exists k, s. t. \sum_{i=0}^{n-1} {b_i(k,n,V) \choose 2} < \frac{v^2}{n}$$
.

How do we store S?

There will be two levels of hashing. In the first level

use:
$$n = s, V = S$$

Let h_k be a hash function that satisfies the following equation (1). The existence of such a

function is ensured by the above Corollary. Assume that $\begin{pmatrix} a \\ b \end{pmatrix} = 0$ when a < b.

$$\sum_{i=0}^{s-1} {b_i(k,s,s) \choose 2} < \frac{s^2}{s} = s$$
 (1)

In the second level do the following:

For the bucket i (0 ≤ i ≤ s - 1)
 Use a hash function h_{ki} with "n" = b_i(k, s, S)². In this case the hashing will be perfect (for an appropriate choice of h_{ki}).

Space for the hash functions = (s + 1).

Space for the first level = s.

Space for the second level = $\sum_{i=0}^{s-1} b_i(k, s, S)^2$.

From equation (1)

- \rightarrow Total memory used = O(s).

Note.

Searching time = O(1).

We only have to do two hash function evaluations.

How do we find good k values?

We have to find (s+1) hash functions such that for each function the above Corollary holds. If the set that is hashed is V with |V| = v, then we can try each value of k and this trivial algorithm takes O(mn) time. This can be done in $O(mv \log v)$ time as well.

Fact.

For at least $\frac{1}{2}$ of the *k*-values $\sum_{i=0}^{n-1} {b_i(k,n,V) \choose 2} < \frac{2v^2}{n}$.

- If we pick a random k, then Prob. $\left[\sum_{i=0}^{n-1} {b_i(k,n,V) \choose 2} < \frac{2v^2}{n}\right] \ge \frac{1}{2}$.
- As a result, the time needed to find a good k is $\tilde{0}$ $(n \log v)$.

Therefore, the time needed to find all the (s+1) hash functions is

$$\tilde{O}([s + \sum_{i=0}^{s-1} b_i(k, s, S)^2] \log s) = \tilde{O}(s \log s).$$

The probabilistic method:

is used to show the existence of objects that possess a given set of properties.

We use two basic facts:

- 1. If X is a random variable with a mean μ then X takes on a value that is $\geq \mu$ and X takes on a value that is $\leq \mu$.
- Let *U* be a set of objects and let *P* be a property.
 If Prob. [a random object of *U* has property *P*] > 0 then it implies that *U* has at least one object with property *P*.

Example 1.

Let G(V, E) be an undirected graph. Then

 \exists a partition of V into V_1 and V_2 , s.t. the number of edges from V_1 to V_2 is $\geq \frac{|E|}{2}$.

Proof.

For every node $u \in V$

Put it in V_1 with probability = $\frac{1}{2}$;

Put it in V_2 with probability = $\frac{1}{2}$;

For any edge $e \in E$

Probability that it goes from V_1 to $V_2 = \frac{1}{2}$.

=> The expected number of edges from V_1 to V_2 is $\geq \frac{|E|}{2}$.

Using (1), \exists a partition for which the number of edges from V_1 to V_2 is $\geq \frac{|E|}{2}$.

Example 2.

Input: $F = C_1 \land C_2 \land C_3 \land \dots \land C_m$, which is a CNF Boolean formula on n variables.

Fact: There exists an assignment that satisfies $\geq \frac{m}{2}$ clauses.

Proof.

Let C_i be any clause with k literals. Give a random assignment to the variables.

Prob. [C_i is not satisfied] = 2^{-k} .

- => Prob. [C_i is satisfied] = $1 2^{-k} \ge \frac{1}{2}$.
- => Expected number of satisfied clauses = $\frac{m}{2}$.

Using (1), \exists an assignment that satisfies $\geq \frac{m}{2}$ clauses. \Box

Example 3.

Let C_n be a complete graph on n nodes.

Let k and t be integers.

R(k,t) is the minimum value of n s.t. if the edges of C_n are colored with red and blue, then for each such coloring \exists either a red clique of size k or a blue clique of size t. R(k, t) is known as the Ramsey number.

Fact.

If
$$\binom{n}{k} 2^{1-\binom{k}{2}} < 1$$
 then $R(k, k) > n$.

Proof.

Color the edges randomly.

Let *X* be a subset of nodes with |X| = k.

Prob. [X is unicolored] = $2^{1-\binom{k}{2}}$.

If
$$\binom{n}{k} 2^{1-\binom{k}{2}} < 1$$
 then

Prob. [No subset X of size k is unicolored] > 0.

 \Rightarrow 3 A coloring under which no subset X of size k is unicolored.

$$\Rightarrow R(k,k) > n. \square$$

What is the maximum value of *n* for which $\binom{n}{k} 2^{1-\binom{k}{2}} < 1$?

$$\binom{a}{b} \approx (ae/b)^b$$

$$\left(\frac{ne}{k}\right)^k 2^{1-\binom{k}{2}} < 1$$

$$n^k = \frac{2^{k\frac{(k-1)}{2}}}{2} \left(\frac{k}{e}\right)^k$$

$$n^k \approx \left[2^{\frac{(k-1)}{2}} \frac{k}{e} \right]^k$$

$$n = 2^{\frac{(k-1)}{2}} \frac{k}{e}$$
 is a lower bound on $R(k,k)$.