
CSE 6512 Lecture 1 Notes

Taken by Marius Nicolae

Aug 30, 2011

1 Introduction

• Course handout http://www.engr.uconn.edu/∼rajasek/cse6512f11.html

Definition 1. Average Runtime of an Algorithm =
∑

I∈D TI

|D| where D is the set

of all possible inputs for the algorithm and TI is the runtime on input I.

Definition 2. Randomized Algorithm - an algorithm wherein certain decisions
are made based on the outcome of coin flips.

Definition 3. Monte Carlo Algorithm

• always runs for a pre-specified amount of time

• its output could be incorrect with some low probability

• used for decision (Yes/No) problems (e.g., is number n prime, does graph
G have a clique of size k, etc.)

Definition 4. Las Vegas Algorithm

• always terminates with a correct answer

• its runtime is a random variable; could be very high, with some low prob-
ability

Note: a Monte Carlo algorithm could be turned into a Las Vegas algorithm
if there is a procedure to check whether the output of the Monte Carlo algorithm
is correct or not. Then we can repeat the Monte Carlo algorithm until the answer
is correct, thus obtaining a Las Vegas algorithm.

Definition 5. By High Probability we mean a probability ≥ 1− n−α where n
is the input size (number ofl memory cells necessary for representing the input)
and α is a (constant) probability parameter.

Definition 6. By Low Probability we mean a probability ≤ n−α where n is the
input size and α is a (constant) probability parameter.

Example. n = 10000, α = 100⇒ Low probability ≤ n−α = 10−400

1

2 Examples of Randomized Algorithms

Advantages of randomized algorithms are simplicity and performance. To illus-
trate the power of randomized algorithms we looked at two examples:

2.1 Example 1 - Repeated Element

INPUT: Array[1 : n] where one element repeats n
2 times and the other n

2
elements are distinct
OUTPUT: the repeated element

Deterministic algorithms:
1. Sort the array and scan it (runtime O(n log n))
2. Find the median and output (runtime O(n))
3. Split the input into groups of size 3 each. Since there are n

2 copies of the
repeated element and only n

3 groups, at least one group will have two identical
elements by the pigeonhole principle. Scan the groups to find the repeated
element. Runtime O(n).

For any deterministic algorithm, an adversary with perfect knowledge of the
algorithm and who is in charge of selecting the input can ensure that the first
n
2 + 1 elements examined by the algorithm are distinct. Thus:

Fact 1. Any deterministic algorithm for this problem needs Ω(n) time in the
worst case.

Definition 7. We say that the runtime of a Las Vegas algorithm is Õ(f(n)) if
the runtime is ≤ cαf(n) for all n > n0 with probability ≥ 1− n−α where c and
n0 are constants.

Algorithm 1 A Las Vegas Algorithm

repeat
flip an n-sided coin to get i
flip the same coin to get j
if i 6= j and A[i] = A[j] then

print A[i] and QUIT
end if

until (forever)

Analysys:

1. The probability of success in one basic step is
n
2 (n

2−1)
n2 ≥ 1

5 for all n ≥ 10
2. The probability of failure in one basic step is ≤ 4

5 for n ≥ 10
3. The probability of failure in k successive basic steps is ≤ (4

5)k

4. We want this probability to be ≤ n−α ⇒ (4
5)k = n−α

⇒ k log 4
5 = −α log n⇒ k = α logn

log 5
4

5. Thus, the runtime of this algorithm is Õ(log n)

2

2.2 Example 2 - Element larger than the median

INPUT: array A of n elements
OUTPUT: an element ≥ the median of A[1 : n]

Deterministic algorithms:
1. Find the largest element of A (runtime O(n))
2. Find the largest of any n

2 elements (runtime O(n))

Fact 2. Any deterministic algorithm for this problem needs Ω(n) time in the
worst case.

Algorithm 2 A Monte Carlo Algorithm

pick k elements at random
find the max of these
print max

Analysis:
1. The probability that a random element is incorrect is ≤ 1

2
2. The probability that all k elements are incorrect is ≤ (1

2)k

3. The probability that our algorithm gives an incorrect answers is ≤ (1
2)k.

4. If we equate this to n−α we get k = α log n
5. Thus the runtime is O(log n)

3 Sorting

Algorithm 3 Quick Sort (Hoare 1967)

INPUT: X = k1, k2, . . . , kn (assumed distinct)
OUTPUT: elements of X in sorted order
pick a partition element q
partition X into X1 = {y ∈ X|y < q} and X2 = {y ∈ X|y > q}
recursively sort X1 and X2

print sorted X1, q, sorted X2

Analysis:
Let π1, π2, . . . , πn be the elements of X in sorted order.

Let Xij =

{
1, if πi and πj will be compared by the quicksort algorithm

0, otherwise

The runtime of quicksort will be
∑n
i=1

∑n
j=i+1Xij

The expected runtime of quicksort will be E[
∑n
i=1

∑n
j=i+1Xij] =

∑n
i=1

∑n
j=i+1E[Xij]

to be continued next time. . .

3

