
CSE5095: Research Topics in Big Data Analytics Professor Rajasekaran
4/3/14 Lecture 19: Hierarchical Clustering note taker: Timothy Becker

Rules Inference – we can use techniques similar to the Apriori (pruning).

Random Sampling – take a random sample S (and lower the support threshold). Identify the set Q of frequent
itemsets in the sample. Hopefully, this set will be a superset of all the frequent itemsets in the database DB.

Q: How can we be sure that we have found all the true frequent itemsets in DB?

In the last lecture we introduced the notion of the negative border. Let NB(Q) be the negative border of Q.
Compute the support in DB of each itemset in Q and NB(Q). If none of the itemsets in NB(Q) is frequent, then
we output all the imtesets in Q whose support in DB is greater than or equal to minSupport and quit. If there
exists at least one itemset in NB(Q) whose support in DB is greater than or equal to minSupport, then we know
that Q is not a superset of all the frequent itemsets. In this case we use another algorithm to identify all the
frequent itemsets in DB.

Analysis of Randomized Rules Mining
Let X be any itemset whose support in the DB is f(X).
Let the support of X in the sample S be f’(X) and let |S| = s.
f(X) and f’(X) are expressed as fractions.

Q: what can we say about f’(X) as a function of f(X)?

Note that sf’(X) = B(s, f(X)) (sf’(X) is a Binomial Random Variable with n=s, and p=f(X)). In the following
analysis δ and δ’ are user defined probabilities (usually very small).

Using Chernoff bounds we have:
𝑃𝑟𝑜𝑏 𝑠𝑓′ 𝑿 < 1− 𝜖 𝑠𝑓 𝑿 ≤ exp [!!

!!"(𝑿)
!

]. We want this probability to be ≤ 𝛿 so:

𝛿 = exp
−𝜖!𝑠𝑓 𝑿

2 ⇒ ln 𝛿 =
−𝜖!𝑠𝑓 𝑿

2 ⇒ 𝑠 ≥
2𝑙𝑛 1

𝛿
𝜖!𝑓(𝑿)

Let N be an upper bound on the number of frequent itemsets in DB and m denote minSupport, then:
𝑃𝑟𝑜𝑏 ∃ 𝑎 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝑖𝑡𝑒𝑚𝑠𝑒𝑡 𝑜𝑓 𝐷𝐵 𝑛𝑜𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝑖𝑛 𝑆 ≤ 𝑵 exp !!!!𝒎

!
 (by the union bound).

We want this probability to be ≤ 𝛿′ so:

𝛿′ = 𝑵exp
−𝜖!𝑠𝒎
2 ⇒ ln

𝛿′
𝑵 =

−𝜖!𝑠𝒎
2 ⇒ 𝑠 =

2𝑙𝑛 𝑵
𝛿′

𝜖!𝒎 ∎

(1) With high probability we will take one sampling pass. The value of minimum support to be employed in the
sample is determined using the above equations.
(2) The authors propose a deterministic 2-phase algorithm if the sample misses a frequent itemset found by the
negative border NB(S), second sampling pass could be done instead.

End of Rules Mining (Vertical, Horizontal layouts all utilize heuristics like Apriori).

Clustering Algorithms

We can think of these as data-reduction (this would be point reduction by replacing each cluster by a single
point (centroid of the cluster, for example)).

Let X be a given point set. Then, clustering is defined as a partitioning of X into k groups:
𝑿⟼ 𝑿𝟏,𝑿𝟐,…𝑿𝒌 s.t. points in each cluster are similar to each other.

Let d(i,j) be a distance measure between 𝑝! ,𝑝! ∈ 𝑿. We say 𝑝! and 𝑝! are similar if d(i,j)≤ 𝜖 (for some small
value).

(In general, we can use some objective function to define clustering).

Hierarchical Clustering
input: X={p1, p2, … pn}, k (the number of clusters to compute)
output: k clusters

Algorithm
[0] to begin we have n clusters (each point is a cluster): {p1},{p2},…{pn}
[1] merge clusters (in many stages):
 at any stage we merge the pair of clusters whose distance is minimum.

We could represent the sequence of merges done using a tree called the dendrogram.

Definition: distance between two clusters ci, cj can be defined in several ways:
(i) single-link - 𝑑 𝑐! , 𝑐! = min!∈!!,!∈!! 𝑑(𝑝, 𝑞)
(ii) complete-link - 𝑑 𝑐! , 𝑐! = max!∈!!,!∈!! 𝑑(𝑝, 𝑞)
(iii) average-link - 𝑑 𝑐! , 𝑐! = mean!∈!!,!∈!! 𝑑(𝑝, 𝑞)

Theorem: we can do hierarchical Clustering in O(n2) time.

Construct a pairwise distance matrix D[i,j] = 𝑑 𝑝! ,𝑝! and minimum array min. The min array stores the row
minima.

D 1 … j … n min

1 d(1,1) … d(1,j) … d(1,n) First
row
min

… … … … …

i d(i,1) … d(i,j) … d(i,n) …

	

	

	

	

	 	

k=2

k=3

k=1

… … … … …

n d(n,1) … d(n,j) … d(n,n) Min
of
row
n

[0] to begin with using min find the closest points. At any given time we have a single row to represent a
cluster.

[1] merging: Let pi and pj be the two closest clusters. We merge these two rows into one. For example, the
merged row could be row i. Merging of the two rows is done as follows.
𝑑 𝑖, 𝑞 = min!!!!! 𝑑 𝑖, 𝑞 ,𝑑(𝑗, 𝑞) and min[i] = min{min[i], min[j]}

[2] do [1] n-2 times

Analysis
It takes O(n2) time to do all pairwise calculations (assuming that d(i,j) is done in O(1) time for a specific i and
j.)
For each merge we spend O(n) time for a total merging time of O(n2).
Total time then is: O(n2) + O(n2) = O(n2).

Note: Instead of getting the number of clusters as the input, we could also think of a variation where we get a
threshold on the distance. We could then eliminate all the edges in the dendrogram whose edge weights are
greater than the threshold. Each tree in the resultant forest will be an output cluster.

Parallel Hierarchical Clustering (Rajasekaran 2004)
[1] Construct a minimum spanning tree (MST).
[2] Delete all the edges whose weights are greater than the given distance threshold.
[3] Find the connected components in the resultant forest. Each component is a cluster.

claim: ∃ a Las Vegas implementation of this algorithm on the CRCW PRAM model that runs in 𝑂(logn) time
using !!

!"#!
 processors.

Theorem (Pettie&Ramachandran 2002)
We can construct a MST for any undirected graph G(V,E) in 𝑂(log|V|) using ! !|!|

!"# |!|
 CRCW PRAM processors.

(use this for Rajasekaran step[1]).

Fact: We can find the connected components in a forest F in O(log |V|) using |V| processors.

⇒ we can do ||l Hierarchical Clustering in 𝑂(log n) time using !!

!"#!
 processors.

Application: Records Linkage
Useful in biomedical informatics where individuals may vary services, generating several partial records at
disparate medical locations.

input: D1, D2, … Dk (data sets of medical records)
output: clusters where each cluster contains records belonging to the same individual exclusively.

Approach: put all the records into one collection C, perform Hierarchical clustering on C. Each cluster is
output as records belonging to one individual. Each record is thought of as a string of characters (obtained by
concatenating the various fields in the record such as the first name, last name, social security number, etc.)
Distance between two records is calculated as the edit distance between the two corresponding strings. Recall
that string edit distance is the minimum number of edits needed to transform one string into another using
insertion, deletion, and substitution operations).

If min{|Ri|, |Rj|} = L and the distance threshold is set as τ, then we can compute
d(Ri, Rj) in O(Lτ) time.

Blocking Technique
Hash a substring of contiguous characters (or k-mer) into buckets and do clustering on the buckets.

[EX] k=3
If R = “abcdefghijklmnopqrstuvwxyz”, the 3-mers in this string are
“abc”, … , and “xyz”.
There will be a bucket corresponding to each possible 3-mer. The record R will be hashed into buckets
corresponding to all of the above 3-mers.

The intuition behind blocking is the observation that if two records are very similar, then they should share at
least one l-mer (for some suitably small value of l).

End of lecture, continued in lecture 20.

