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Rules Inference – we can use techniques similar to the Apriori (pruning). 
 
Random Sampling – take a random sample S (and lower the support threshold). Identify the set Q of frequent 
itemsets in the sample. Hopefully, this set will be a superset of all the frequent itemsets in the database DB. 
     
Q: How can we be sure that we have found all the true frequent itemsets in DB? 
 
In the last lecture we introduced the notion of the negative border. Let NB(Q) be the negative border of Q. 
Compute the support in DB of each itemset in Q and NB(Q). If none of the itemsets in NB(Q) is frequent, then 
we output all the imtesets in Q whose support in DB is greater than or equal to minSupport and quit. If there 
exists at least one itemset in NB(Q) whose support in DB is greater than or equal to minSupport, then we know 
that Q is not a superset of all the frequent itemsets. In this case we use another algorithm to identify all the 
frequent itemsets in DB. 
  
Analysis of Randomized Rules Mining 
Let X be any itemset whose support in the DB is f(X). 
Let the support of X in the sample S be f’(X) and let |S| = s. 
f(X) and f’(X) are expressed as fractions. 
 
Q: what can we say about f’(X) as a function of f(X)? 
 
Note that sf’(X) = B(s, f(X))    (sf’(X) is a Binomial Random Variable with n=s, and p=f(X)). In the following 
analysis δ and δ’ are user defined probabilities (usually very small). 
 
Using Chernoff bounds we have: 
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Let N be an upper bound on the number of frequent itemsets in DB and m denote minSupport, then: 
𝑃𝑟𝑜𝑏 ∃  𝑎  𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡  𝑖𝑡𝑒𝑚𝑠𝑒𝑡  𝑜𝑓  𝐷𝐵  𝑛𝑜𝑡  𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡  𝑖𝑛  𝑆 ≤ 𝑵 exp !!!!𝒎
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   (by the union bound). 
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(1) With high probability we will take one sampling pass. The value of minimum support to be employed in the 
sample is determined using the above equations. 
(2) The authors propose a deterministic 2-phase algorithm if the sample misses a frequent itemset found by the 
negative border NB(S), second sampling pass could be done instead. 
 
End of Rules Mining (Vertical, Horizontal layouts all utilize heuristics like Apriori). 
 
Clustering Algorithms 



We can think of these as data-reduction (this would be point reduction by replacing each cluster by a single 
point (centroid of the cluster, for example)). 
 
Let X be a given point set. Then, clustering is defined as a partitioning of X into k groups:  
𝑿⟼ 𝑿𝟏,𝑿𝟐,…𝑿𝒌 s.t. points in each cluster are similar to each other. 
 
Let d(i,j) be a distance measure between 𝑝! ,𝑝! ∈ 𝑿. We say 𝑝!   and  𝑝! are similar if d(i,j)≤ 𝜖 (for some small 
value). 
 
(In general, we can use some objective function to define clustering). 
 
 
Hierarchical Clustering 
input: X={p1, p2, … pn},  k (the number of clusters to compute) 
output: k clusters  
 
Algorithm 
[0] to begin we have n clusters (each point is a cluster): {p1},{p2},…{pn} 
[1] merge clusters (in many stages): 
 at any stage we merge the pair of clusters whose distance is minimum. 
 
We could represent the sequence of merges done using a tree called the dendrogram. 
 
Definition: distance between two clusters ci, cj can be defined in several ways: 
(i) single-link - 𝑑 𝑐! , 𝑐! =   min!∈!!,!∈!! 𝑑(𝑝, 𝑞)  
(ii) complete-link - 𝑑 𝑐! , 𝑐! =   max!∈!!,!∈!! 𝑑(𝑝, 𝑞)  
(iii) average-link - 𝑑 𝑐! , 𝑐! =   mean!∈!!,!∈!! 𝑑(𝑝, 𝑞)  
 
 
 
 
 
 
 
 
 
 
Theorem: we can do hierarchical Clustering in O(n2) time. 
 
Construct a pairwise distance matrix D[i,j] = 𝑑 𝑝! ,𝑝!  and minimum array min. The min array stores the row 
minima.  
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[0] to begin with using min find the closest points. At any given time we have a single row to represent a 
cluster. 
 
[1] merging: Let pi and pj be the two closest clusters. We merge these two rows into one. For example, the 
merged row could be row i. Merging of the two rows is done as follows. 
𝑑 𝑖, 𝑞 =   min!!!!! 𝑑 𝑖, 𝑞 ,𝑑(𝑗, 𝑞)   and min[i] = min{min[i], min[j]} 
 
[2] do [1] n-2 times 
 
 
Analysis 
It takes O(n2) time to do all pairwise calculations (assuming that d(i,j) is done in O(1) time for a specific i and 
j.) 
For each merge we spend O(n) time for a total merging time of O(n2). 
Total time then is: O(n2) + O(n2) = O(n2). 
 
Note: Instead of getting the number of clusters as the input, we could also think of a variation where we get a 
threshold on the distance. We could then eliminate all the edges in the dendrogram whose edge weights are 
greater than the threshold. Each tree in the resultant forest will be an output cluster. 
 
Parallel Hierarchical Clustering (Rajasekaran 2004) 
[1] Construct a minimum spanning tree (MST). 
[2] Delete all the edges whose weights are greater than the given distance threshold. 
[3] Find the connected components in the resultant forest. Each component is a cluster. 
 
claim: ∃ a Las Vegas implementation of this algorithm on the CRCW PRAM model that runs in 𝑂(logn) time 
using !!

!"#!
  processors. 

 
Theorem (Pettie&Ramachandran 2002) 
We can construct a MST for any undirected graph G(V,E) in 𝑂(log|V|) using ! !|!|

!"#   |!|
  CRCW PRAM processors.  

(use this for Rajasekaran step[1]). 
 
Fact: We can find the connected components in a forest F in O(log |V|) using |V| processors. 
 
⇒ we can do ||l Hierarchical Clustering in 𝑂(log n) time using !!

!"#!
  processors. 

 
Application: Records Linkage 
Useful in biomedical informatics where individuals may vary services, generating several partial records at 
disparate medical locations. 
 
input: D1, D2, … Dk (data sets of medical records) 
output: clusters where each cluster contains records belonging to the same individual exclusively. 
 



Approach: put all the records into one collection C, perform Hierarchical clustering on C. Each cluster is 
output as records belonging to one individual. Each record is thought of as a string of characters (obtained by 
concatenating the various fields in the record such as the first name, last name, social security number, etc.) 
Distance between two records is calculated as the edit distance between the two corresponding strings. Recall 
that string edit distance is the minimum number of edits needed to transform one string into another using 
insertion, deletion, and substitution operations). 
 
If min{|Ri|, |Rj|} = L and the distance threshold is set as τ, then we can compute 
d(Ri, Rj) in O(Lτ) time. 
 
Blocking Technique 
Hash a substring of contiguous characters (or k-mer) into buckets and do clustering on the buckets. 
 
[EX] k=3 
If R = “abcdefghijklmnopqrstuvwxyz”, the 3-mers in this string are 
“abc”, … , and “xyz”. 
There will be a bucket corresponding to each possible 3-mer. The record R will be hashed into buckets 
corresponding to all of the above 3-mers. 
 
The intuition behind blocking is the observation that if two records are very similar, then they should share at 
least one l-mer (for some suitably small value of l). 
 
End of lecture, continued in lecture 20. 


